Diophantine equations and class numbers

@inproceedings{Mollin1986DiophantineEA,
  title={Diophantine equations and class numbers},
  author={Richard A. Mollin},
  year={1986}
}
Abstract The goals of this paper are to provide: (1) sufficient conditions, based on the solvability of certain diophantine equations, for the non-triviality of the class numbers of certain real quadratic fields; (2) sufficient conditions for the divisibility of the class numbers of certain imaginary quadratic fields by a given integer; and (3) necessary and sufficient conditions for an algebraic integer (which is not a unit) to be the norm of an algebraic integer in a given extension of number… CONTINUE READING

Tables from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 13 REFERENCES

COWLES, On the divisibility of the class number of imaginary quadratic tields

  • M J.
  • J. Number Theory
  • 1980
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

MOLLIN, Class numbers and a generalized Fermat theorem

  • R A.
  • J. Number Theory
  • 1983

MOLLIN, On the cyclotomic polynomial

  • R A.
  • J. Number Theory
  • 1983

On the class-number of the maximal real subfield of a cyclotomic field, Canad

  • H. TAKEUCHI
  • J. Math. 33, No
  • 1981
VIEW 3 EXCERPTS

DEGERT , Uber die Bestimmung der Grundeinheit gewisser reelquadratischer Zahlokiirper

  • G.
  • Abh . Math . Sem . Univ . Hamburg
  • 1980

ROHRLICH, Some results on the Mordell-Weil group of the Jacobian of the Fern-rat curve

  • D.E.B.H. GROSS
  • Invent. Marh
  • 1978
VIEW 2 EXCERPTS

Note on the class-number of the maximal real subfield of a cyclotomic field

  • S. D. LANG
  • J. Reine Angew Math
  • 1977

On the class-number of the maximal real subfield of a cyclotomic field

  • I. YAMAGUCHI
  • J. Reine Angew. Math
  • 1975
VIEW 1 EXCERPT