Dimensions of ‘self-affine sponges’ invariant under the action of multiplicative integers
@article{Brunet2021DimensionsO, title={Dimensions of ‘self-affine sponges’ invariant under the action of multiplicative integers}, author={Guilhem Brunet}, journal={Ergodic Theory and Dynamical Systems}, year={2021} }
Let
$m_1 \geq m_2 \geq 2$
be integers. We consider subsets of the product symbolic sequence space
$(\{0,\ldots ,m_1-1\} \times \{0,\ldots ,m_2-1\})^{\mathbb {N}^*}$
that are invariant under the action of the semigroup of multiplicative integers. These sets are defined following Kenyon, Peres, and Solomyak and using a fixed integer
$q \geq 2$
. We compute the Hausdorff and Minkowski dimensions of the projection of these sets onto an affine grid of the unit…
2 Citations
Thermodynamic formalism and large deviation principle of multiplicative Ising models
- Mathematics
- 2022
The aim of this study is tree-fold. First, we investigate the thermodynamics of the Ising models with respect to 2-multiple Hamiltonians. This extends the previous results of [Chazotte and Redig,…
Large Deviation Principle of Multidimensional Multiple Averages on $\mathbb{N}^d$
- Mathematics
- 2021
This paper establishs the large deviation principle (LDP) for multiple averages on Nd. We extend the previous work of [Carinci et al., Indag. Math. 2012] to multidimensional lattice Nd for d ≥ 2. The…
References
SHOWING 1-10 OF 13 REFERENCES
Hausdorff dimension for fractals invariant under multiplicative integers
- MathematicsErgodic Theory and Dynamical Systems
- 2011
Abstract We consider subsets of the (symbolic) sequence space that are invariant under the action of the semigroup of multiplicative integers. A representative example is the collection of all 0–1…
Foundations of Ergodic Theory
- Education
- 2018
Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory suitable for a variety of oneor two-semester courses. The authors’ clear and…
Foundations of Ergodic Theory
- Mathematics
- 2016
Preface 1. Recurrence 2. Existence of invariant measures 3. Ergodic theorems 4. Ergodicity 5. Ergodic decomposition 6. Unique ergodicity 7. Correlations 8. Equivalent systems 9. Entropy 10.…
Dimensions of some fractals defined via the semigroup generated by 2 and 3
- Mathematics
- 2012
We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σm={0, ...,m−1}ℕ that are invariant under multiplication by integers. The results apply to the sets {x∈Σm:∀ k, xkx2k…
Level sets of multiple ergodic averages
- Mathematics
- 2011
We propose to study multiple ergodic averages from multifractal analysis point of view. In some special cases in the symbolic dynamics, the Hausdorff dimensions of the level sets for the limit of…
Dimension theory of iterated function systems
- Mathematics
- 2009
Let {Si} i = 1𝓁 be an iterated function system (IFS) on ℝd with attractor K. Let (Σ, σ) denote the one‐sided full shift over the alphabet {1, …, 𝓁}. We define the projection entropy function hπ on…
Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation
- MathematicsMathematical systems theory
- 2005
The objects of ergodic theory -measure spaces with measure-preserving transformation groups- will be called processes, those of topological dynamics-compact metric spaces with groups of homeomorphisms-will be called flows, and what may be termed the "arithmetic" of these classes of objects is concerned.
Techniques in fractal geometry
- Mathematics
- 1997
Mathematical Background. Review of Fractal Geometry. Some Techniques for Studying Dimension. Cookie-cutters and Bounded Distortion. The Thermodynamic Formalism. The Ergodic Theorem and Fractals. The…
Measures of full dimension on affine-invariant sets
- MathematicsErgodic Theory and Dynamical Systems
- 1996
Abstract We determine the Hausdorff and Minkowski dimensions of some self-affine Sierpinski sponges, extending results of McMullen and Bedford. This result is used to show that every compact set…