Differing requirements for actin and myosin by plant viruses for sustained intercellular movement.


The actin cytoskeleton has been implicated in the intra- and intercellular movement of a growing number of plant and animal viruses. However, the range of viruses influenced by actin for movement and the mechanism of this transport are poorly understood. Here we determine the importance of microfilaments and myosins for the sustained intercellular movement of a group of RNA-based plant viruses. We demonstrate that the intercellular movement of viruses from different genera [tobacco mosaic virus (TMV), potato virus X (PVX), tomato bushy stunt virus (TBSV)], is inhibited by disruption of microfilaments. Surprisingly, turnip vein-clearing virus (TVCV), a virus from the same genus as TMV, did not require intact microfilaments for normal spread. To investigate the molecular basis for this difference we compared the subcellular location of GFP fusions to the 126-kDa protein and the homologous 125-kDa protein from TMV and TVCV, respectively. The 126-kDa protein formed numerous large cytoplasmic inclusions associated with microfilaments, whereas the 125-kDa protein formed few small possible inclusions, none associated with microfilaments. The dependence of TMV, PVX, and TBSV on intact microfilaments for intercellular movement led us to investigate the role of myosin motors in this process. Virus-induced gene silencing of the Nicotiana benthamiana myosin XI-2 gene, but not three other myosins, inhibited only TMV movement. These results indicate that RNA viruses have evolved differently in their requirements for microfilaments and the associated myosin motors, in a manner not correlated with predicted phylogeny.

DOI: 10.1073/pnas.0909239106

5 Figures and Tables

Citations per Year

628 Citations

Semantic Scholar estimates that this publication has 628 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Harries2009DifferingRF, title={Differing requirements for actin and myosin by plant viruses for sustained intercellular movement.}, author={Phillip A. Harries and Jong-won Park and Nobumitsu Sasaki and Kimberly D. Ballard and Andrew john Maule and Richard S. Nelson}, journal={Proceedings of the National Academy of Sciences of the United States of America}, year={2009}, volume={106 41}, pages={17594-9} }