Differential effects of temperature and glucose on glycogenolytic enzymes in tissues of rainbow trout (Oncorhynchus mykiss).


The pathways and regulatory mechanisms of glycogenolysis remain relatively unexplored in non-mammalian vertebrates, especially poikilotherms. We studied the temperature sensitivity and inhibition of glycogenolytic enzymes in liver, ventricle, and white muscle of rainbow trout acclimated to 14 °C. Glycogen phosphorylase (GP) and acid α-glucosidase (GAA) activities were measured in homogenates of tissues at physiological temperatures (4, 14, and 24 °C), and in the presence of allosteric inhibitor, glucose. Higher GP versus GAA activity in all three tissues suggested a predominance of phosphorolytic glycogenolysis over the lysosomal glucosidic pathway. GP activities at 14 °C were ~2-fold higher in the ventricle and white muscle versus the liver and selectively increased by AMP in striated muscle. Conversely, the activities of GAA and lysosomal marker acid phosphatase were 8- to 10-fold higher in the liver compared with the ventricle and white muscle. Thermal sensitivity (Q10) was increased for GP in all tissues below 14 °C and decreased in striated muscle in the absence of AMP above 14 °C. GAA had lower Q10 values than GP below 14 °C, and, unlike GP, Q10s for GAA were not different between tissues or affected by temperature. Both GP (in the absence of AMP) and GAA were inhibited by glucose in a dose-dependent manner, with the lowest IC50 values observed in the white muscle (1.4 and 6.3 mM, respectively). In conclusion, despite comparatively low kinetic potential, lysosomal GAA might facilitate glycogenolysis at colder body temperatures in striated muscle and intracellular glucose could limit phosphorolytic and glucosidic glycogenolysis in multiple tissues of the rainbow trout.

DOI: 10.1016/j.cbpb.2014.03.003

Cite this paper

@article{Bolinger2014DifferentialEO, title={Differential effects of temperature and glucose on glycogenolytic enzymes in tissues of rainbow trout (Oncorhynchus mykiss).}, author={Mark T Bolinger and Kenneth J . Rodnick}, journal={Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology}, year={2014}, volume={171}, pages={26-33} }