• Computer Science, Engineering
  • Published in
    International Conference on…
    2018
  • DOI:10.1117/12.2302497

Different approaches for the texture classification of a remote sensing image bank

@inproceedings{Durand2018DifferentAF,
  title={Different approaches for the texture classification of a remote sensing image bank},
  author={Philippe Durand and Gerard Brunet and Dariush Ghorbanzadeh and Luan Jaupi},
  booktitle={International Conference on Graphic and Image Processing},
  year={2018}
}
In this paper, we summarize and compare two different approaches used by the authors, to classify different natural textures. The first approach, which is simple and inexpensive in computing time, uses a data bank image and an expert system able to classify different textures from a number of rules established by discipline specialists. The second method uses the same database and a neural networks approach. 

References

Publications referenced by this paper.
SHOWING 1-10 OF 15 REFERENCES

Automatic and efficient methods applied to the binarization of a subway map

Jaupi, "Automatic and e cient methods applied to the binarization of a subway map

  • Philippe Durand, Dariush Ghorbanzadeh, Luan
  • Proceedings of SPIE Vol. 9817,
  • 2015
VIEW 1 EXCERPT

Jaupi. "Robust Statistics for Classi cation of Remote Sensing Data

  • D. Herwindiati, L. M. Djauhari
  • 20th International Conference on COMPUTATIONAL STATISTICS (COMPSTAT
  • 2012
VIEW 1 EXCERPT

Classi cation des nuages d'eau sur des images Meteosat

  • M Mesri, A. Cherknane, A.A.Bey Boumezrag, M. Regigue
  • Revue des Energies Renouvelables Vol 13
  • 2010

A knowledge-based system for interpretation of satellite pictures

  • P. Brunet G. Durand, J. P. Rudant
  • IEEE International Geoscience And Remote Sensing Symposium and Helsinki (IGARSS),
  • 1991
VIEW 2 EXCERPTS

Un système d'interprétation mixte : reseau de neurones, Système expert appliqué à l'interprétation d'images aériennes" RFIA, 477-488

  • P. Gaussier, J. P. Cocquerez
  • Springer Verlag, 47,
  • 1991
VIEW 1 EXCERPT

Modles connexionistes de l''''apprentissage

VIEW 2 EXCERPTS