Diagonal $p$-permutation functors.

@article{Bouc2019DiagonalF,
  title={Diagonal \$p\$-permutation functors.},
  author={S. Bouc and D. Yılmaz},
  journal={arXiv: Group Theory},
  year={2019}
}
  • S. Bouc, D. Yılmaz
  • Published 2019
  • Mathematics
  • arXiv: Group Theory
  • Let $k$ be an algebraically closed field of positive characteristic $p$, and $\mathbb{F}$ be an algebraically closed field of characteristic 0. We consider the $\mathbb{F}$-linear category $\mathbb{F} pp_k^\Delta$ of finite groups, in which the set of morphisms from $G$ to $H$ is the $\mathbb{F}$-linear extension $\mathbb{F} T^\Delta(H,G)$ of the Grothendieck group $T^\Delta(H,G)$ of $p$-permutation $(kH,kG)$-bimodules with (twisted) diagonal vertices. The $\mathbb{F}$-linear functors from… CONTINUE READING

    References

    SHOWING 1-10 OF 13 REFERENCES
    P-permutation equivalences between blocks of finite groups
    • 2
    Relative B-groups
    • 1
    • PDF
    Splendid Equivalences: Derived Categories and Permutation Modules
    • 144
    A study of a simple p-permutation functor
    • 6
    The primitive idempotents of the p-permutation ring
    • 8
    • PDF
    Simple modules over Green biset functors
    • 18
    • PDF
    Foncteurs d'ensembles munis d'une double action
    • 107
    • PDF