Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.

Abstract

We explore the use of Monte-Carlo-model-based approaches for the analysis of fluorescence and diffuse reflectance spectra measured ex vivo from breast tissues. These models are used to extract the absorption, scattering, and fluorescence properties of malignant and nonmalignant tissues and to diagnose breast cancer based on these intrinsic tissue properties. Absorption and scattering properties, including beta-carotene concentration, total hemoglobin concentration, hemoglobin saturation, and the mean reduced scattering coefficient are derived from diffuse reflectance spectra using a previously developed Monte Carlo model of diffuse reflectance. A Monte Carlo model of fluorescence described in an earlier manuscript was employed to retrieve the intrinsic fluorescence spectra. The intrinsic fluorescence spectra were decomposed into several contributing components, which we attribute to endogenous fluorophores that may present in breast tissues including collagen, NADH, and retinol/vitamin A. The model-based approaches removes any dependency on the instrument and probe geometry. The relative fluorescence contributions of individual fluorescing components, as well as beta-carotene concentration, hemoglobin saturation, and the mean reduced scattering coefficient display statistically significant differences between malignant and adipose breast tissues. The hemoglobin saturation and the reduced scattering coefficient display statistically significant differences between malignant and fibrous/benign breast tissues. A linear support vector machine classification using (1) fluorescence properties alone, (2) absorption and scattering properties alone, and (3) the combination of all tissue properties achieves comparable classification accuracies of 81 to 84% in sensitivity and 75 to 89% in specificity for discriminating malignant from nonmalignant breast tissues, suggesting each set of tissue properties are diagnostically useful for the discrimination of breast malignancy.

DOI: 10.1117/1.2931078

Statistics

0501002008200920102011201220132014201520162017
Citations per Year

187 Citations

Semantic Scholar estimates that this publication has 187 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Zhu2008DiagnosisOB, title={Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.}, author={Changfang Zhu and Gregory M Palmer and Tara M Breslin and Josephine Harter and Nirmala Ramanujam}, journal={Journal of biomedical optics}, year={2008}, volume={13 3}, pages={034015} }