Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor

Abstract

An intestinal protozoan parasite, Cryptosporidium parvum, is a major cause of waterborne gastrointestinal disease worldwide. Detection of Cryptosporidium oocysts in potable water is a high priority for the water treatment industry to reduce potential outbreaks among the consumer populace. Anti-Cryptosporidium oocyst polyclonal and monoclonal antibodies were tested as capture and detection reagents for use in a fiber optic biosensor assay for the detection of Cryptosporidium oocysts. Antibodies were validated using enzyme-linked immunosorbent assays, flow cytometry, Western blotting and fluorescent microscopy. Oocysts could be detected at a concentration of 105 oocysts/ml when the polyclonal antibodies were used as the capture and detection reagents. When oocysts were boiled prior to detection, a ten-fold increase in sensitivity was achieved using the polyclonal antibody. Western blotting and immunofluorescence revealed that both the monoclonal and polyclonal antibodies recognize a large (>300 kDa) molecular weight mucin-like antigen present on the surface of the oocyst wall. The polyclonal antibody also reacted with a small (105 kDa) molecular weight antigen that was present in boiled samples of oocysts. Preliminary steps to design an in-line biosensor assay system have shown that oocysts would have to be concentrated from water samples and heat treated to allow detection by a biosensor assay.

DOI: 10.1186/1754-1611-1-3

Extracted Key Phrases

0502008200920102011201220132014201520162017
Citations per Year

86 Citations

Semantic Scholar estimates that this publication has 86 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Kramer2007DevelopmentOA, title={Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor}, author={Marianne F Kramer and Graham Vesey and Natasha L Look and Ben R. Herbert and Joyce M Simpson-Stroot and Daniel Lim}, journal={Journal of Biological Engineering}, year={2007}, volume={1}, pages={3 - 3} }