Deterministically broken Periodicity of Linear Congruential Generators using Quasi-Crystals

Abstract

We describe the design of a family of aperiodic pseudorandom number generator (APRNG). These deterministic generators are based on linear congruential generators (LCGs) and, unlike any other deterministic PRNG, lead to nonperiodic pseudorandom sequences. An APRNG consists of several LCGs whose combination, controlled by a quasicrystal, forms an infinite aperiodic sequence of pseudorandom numbers. Résumé Nous décrivons la conception d'une famille de générateurs apériodique de nombres pseudo-aléatoires (GANPA). Ces générateurs déterministes utilisent des générateurs congruents linéaires (GCLs) et, contrairementà tout autre GNPA, engendrent des suites pseudo-aléatoires apériodiques. Un GANPA est formé de GCLs dont la combinaison, déterminéè a l'aide d'un quasicristal, forme une suite infinie et apériodique de nombres pseudo-aléatoires.

1 Figure or Table

Showing 1-10 of 12 references

Methods of computer-based generation of quasicrystals, Master's thesis

  • Jan Patera
  • 1999
2 Excerpts

Substitution rules for 1-dimensional cut and project tilings

  • 1999
3 Excerpts

Acceptance windows compatible with a quasicrystal fragment, Order, Chance and Risk

  • Jiří Patera
  • 1998
1 Excerpt

Minimal distances in quasicrystals

  • 1998
2 Excerpts

Quadratic irrationalities and geometric properties of one-dimensional quasicrystals, Preprint

  • 1998
2 Excerpts

The art of computer programming: Seminumerical methods

  • 1998
1 Excerpt

Quasicrystals and icosians

  • R Moody, J Patera
  • 1994
2 Excerpts

The algebraic theory of quasicrystals with five-fold symmetry

  • S Berman, R V Moody
  • 1994
1 Excerpt

How to predict congruential generators

  • 1992
1 Excerpt