Determinants of (generalised) Catalan Numbers

@inproceedings{KrattenthalerDeterminantsO,
  title={Determinants of (generalised) Catalan Numbers},
  author={Christian Krattenthaler}
}
We show that recent determinant evaluations involving Catalan numbers and generalisations thereof have most convenient explanations by combining the Lindström– Gessel–Viennot theorem on non-intersecting lattice paths with a simple determinant lemma from [Manuscripta Math. 69 (1990), 173–202]. This approach leads also naturally to extensions and generalisations. 

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 40 references

Catalan determinants — a combinatorial approach

  • A T Benjamin, N T Cameron, J J Quinn, C R Yerger
  • Proceedings of the 12th International Fibonacci…
  • 2006

Watermelon configurations with wall interaction: exact and asymptotic results

  • C Krattenthaler
  • J. Physics: Conf. Series
  • 2006

Catalan numbers, and Hankel transform, and Fibonacci numbers

  • A Cvetkovi´cvetkovi´c, P Rajkovi´rajkovi´c, M Ivkovi´ivkovi´c
  • J. Integer Seq
  • 2002

Some relations between generalized Fibonacci and Catalan numbers, Sitz.ber. d. ¨ OAW Math.-naturwiss

  • J Cigler
  • Klasse
  • 2002

Similar Papers

Loading similar papers…