Determinant of the Schrödinger Operator on a Metric Graph

@inproceedings{Friedlander2005DeterminantOT,
  title={Determinant of the Schr{\"o}dinger Operator on a Metric Graph},
  author={Leonid Friedlander},
  year={2005}
}
In the paper, we derive a formula for computing the determinant of a Schrödinger operator on a compact metric graph. This formula becomes very explicit in the case of the Laplacian with the Neumann boundary conditions. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-7 of 7 references

Spectral determinants of Schrödinger operators on graphs

  • J. Desbois
  • J . Phys . A
  • 2000

Spectral function, Special functions and the Selberg zeta function

  • A. Voros
  • Comm. Math. Phys
  • 1987

An Invariant Measure for the Equation u tt − u xx + u 3 = 0 , Commun

  • L. Friedlander
  • . Math . Phys .
  • 1985

An Invariant Measure for the Equation utt − uxx +

  • L. Friedlander
  • Commun. Math. Phys
  • 1985

Perturbation theory for linear operators, Springer Verlag, Berlin–Heidelberg

  • T. Kato
  • New York,
  • 1966

Kappeler , On the determinant for elliptic differential operators in vector bundles over S 1 , Commun

  • L. Friedlander, T.
  • . Math . Phys .

Kappeler , On the determinants of elliptic boundary value problems on a line segment

  • L. Friedlander D. Burghelea, T.
  • Proceedings of AMS

Similar Papers

Loading similar papers…