Design of Multi-Binding-Site Inhibitors, Ligand Efficiency, and Consensus Screening of Avian Influenza H5N1 Wild-Type Neuraminidase and of the Oseltamivir-Resistant H274Y Variant

Abstract

The binding sites of wild-type avian influenza A H5N1 neuraminidase, as well as those of the Tamiflu (oseltamivir)-resistant H274Y variant, were explored computationally to design inhibitors that target simultaneously several adjacent binding sites of the open conformation of the virus protein. The compounds with the best computed free energies of binding, in agreement by two docking methods, consensus scoring, and ligand efficiency values, suggest that mimicking a polysaccharide, beta-lactam, and other structures, including known drugs, could be routes for multibinding site inhibitor design. This new virtual screening method based on consensus scoring and ligand efficiency indices is introduced, which allows the combination of pharmacodynamic and pharmacokinetic properties into unique measures.

DOI: 10.1021/ci800242z

Extracted Key Phrases

4 Figures and Tables

Statistics

05010020102011201220132014201520162017
Citations per Year

123 Citations

Semantic Scholar estimates that this publication has 123 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{GarcaSosa2008DesignOM, title={Design of Multi-Binding-Site Inhibitors, Ligand Efficiency, and Consensus Screening of Avian Influenza H5N1 Wild-Type Neuraminidase and of the Oseltamivir-Resistant H274Y Variant}, author={Alfonso T. Garc{\'i}a-Sosa and Sulev Sild and Uko Maran}, journal={Journal of chemical information and modeling}, year={2008}, volume={48 10}, pages={2074-80} }