Design Aspects of a Testbed for an IPv6-Based Future Network for Aeronautical Safety and Non-Safety Communication


In this chapter, the development of a networking testbed to test and validate IPv6-based protocols for future Air Traffic Management (ATM) network is presented. The development was originally initiated within the EC FP6 project NEWSKY (Networking the Sky for Aeronautical Communications), which aimed at developing a concept for a global, heterogeneous communication network for aeronautical communications, based on IPv6 protocol stack. The NEWSKY network integrates different applications (ATS, AOC, AAC, and APC) and different data link technologies (legacy and future long range terrestrial radio, satellite, airport data link, etc.) using a common IPv6 network layer. For proof-of-concept, the NEWSKY testbed has successfully implemented NEWSKY network mobility, handover, and quality of service solutions, and tested and demonstrated them over real satellite link (Fazli et al., 2009). Also the EC FP7 project SANDRA (Seamless Aeronautical Networking through integration of Data-Links, Radios and Antennas) aims at designing and implementing an integrated aeronautical communication system and validating it through a testbed and, further, inflight trials on an A320 (SANDRA web page, 2011). Central design paradigm is the improvement of efficiency and cost-effectiveness by ensuring a high degree of flexibility, scalability, modularity and re-configurability. Whereas the NEWSKY testbed is considered to be a proof-of-concept, the SANDRA testbed will represent a proof-of-principle prototype aircraft communication system, integrating prototypes developed and implemented in SANDRA, comprising AeroMACS, Integrated Modular Radio (IMR), Integrated Router (IR), and a novel Ku-band electronically steerable antenna array. SANDRA focuses on the air-to-ground communication and on the development of the onboard airborne SANDRA terminal. The SANDRA terminal, in particular the IR and the IMR have to jointly implement the capabilities of resource allocation among heterogeneous link access technologies and link reconfigurability (e.g. when new links become available or previously available become unavailable, including handover between links). The required technology-dependent functions (such as control of the heterogeneous link technologies) reside in the IMR, whereas technology-independent functions are implemented in the IR, while using IP to achieve convergence and interoperability between the different link access

4 Figures and Tables

Cite this paper

@inproceedings{Lcke2012DesignAO, title={Design Aspects of a Testbed for an IPv6-Based Future Network for Aeronautical Safety and Non-Safety Communication}, author={Oliver L{\"{u}cke and Eriza Hafid Fazli}, year={2012} }