# Derived smooth stacks and prequantum categories

@article{Wallbridge2016DerivedSS, title={Derived smooth stacks and prequantum categories}, author={James Wallbridge}, journal={arXiv: Symplectic Geometry}, year={2016} }

The Weil-Kostant integrality theorem states that given a smooth manifold endowed with an integral complex closed 2-form, then there exists a line bundle with connection on this manifold with curvature the given 2-form. It also characterises the moduli space of line bundles with connection that arise in this way. This theorem was extended to the case of p-forms by Gajer in [Ga]. In this paper we provide a generalization of this theorem where we replace the original manifold by a derived smooth… Expand

#### 3 Citations

A Physical Origin for Singular Support Conditions in Geometric Langlands Theory

- Mathematics, Physics
- 2017

We explain how the nilpotent singular support condition introduced into the geometric Langlands conjecture by Arinkin and Gaitsgory arises naturally from the point of view of 4-dimensional $$\mathcal… Expand

Quantum Geometric Langlands Categories from N = 4 Super Yang-Mills Theory

- Mathematics, Physics
- 2020

We describe the family of supersymmetric twists of $\mathcal N = 4$ super Yang--Mills theory using derived algebraic geometry, starting from holomorphic Chern--Simons theory on $ \mathcal N = 4$… Expand

Shifted geometric quantization

- Mathematics, Physics
- 2017

We introduce geometric quantization in the setting of shifted symplectic structures. We define Lagrangian fibrations and prequantizations of shifted symplectic stacks and their geometric… Expand

#### References

SHOWING 1-10 OF 36 REFERENCES

Shifted symplectic structures

- Mathematics
- 2011

This is the first of a series of papers about quantization in the context of derived algebraic geometry. In this first part, we introduce the notion of n-shifted symplectic structures (n-symplectic… Expand

Derived smooth manifolds

- Mathematics
- 2008

We define a simplicial category called the category of derived manifolds. It contains the category of smooth manifolds as a full discrete subcategory, and it is closed under taking arbitrary… Expand

Homotopical Algebraic Geometry II: Geometric Stacks and Applications

- Mathematics
- 2004

This is the second part of a series of papers devoted to develop Homotopical Algebraic Geometry. We start by defining and studying generalizations of standard notions of linear and commutative… Expand

Quasi-smooth Derived Manifolds

- History
- 2007

The category Man of smooth manifolds is not closed under arbitrary fiber products; for example the zeroset of a smooth function on a manifold is not necessarily a manifold, and the non-transverse… Expand

Derived complex analytic geometry I: GAGA theorems

- Mathematics
- 2015

We further develop the foundations of derived complex analytic geometry introduced in [DAG-IX] by J. Lurie. We introduce the notion of coherent sheaf on a derived complex analytic space. Moreover,… Expand

Loop spaces and connections

- Mathematics
- 2012

We examine the geometry of loop spaces in derived algebraic geometry and extend in several directions the well-known connection between rotation of loops and the de Rham differential. Our main… Expand

Shifted Poisson structures and deformation quantization

- Mathematics
- 2017

This paper is a sequel to [PTVV]. We develop a general and flexible context for differential calculus in derived geometry, including the de Rham algebra and poly-vector fields. We then introduce the… Expand

Loop Spaces, Characteristic Classes and Geometric Quantization

- Mathematics
- 1994

This book deals with the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Recent developments in mathematical… Expand

Higher analytic stacks and GAGA theorems

- Mathematics
- 2014

We develop the foundations of higher geometric stacks in complex analytic geometry and in non-archimedean analytic geometry. We study coherent sheaves and prove the analog of Grauert's theorem for… Expand

Geometry of Deligne cohomology

- Mathematics
- 1997

It is well known that degree two Deligne cohomology groups can be identified with groups of isomorphism classes of holomorphic line bundles with connections. There is also a geometric description of… Expand