Derivation of nonlinear Gibbs measures from many-body quantum mechanics
@article{Lewin2014DerivationON, title={Derivation of nonlinear Gibbs measures from many-body quantum mechanics}, author={Mathieu Lewin and Phan Th{\`a}nh Nam and Nicolas Rougerie}, journal={arXiv: Mathematical Physics}, year={2014} }
We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum…
52 Citations
Classical field theory limit of 2D many-body quantum Gibbs states
- Physics
- 2018
Nonlinear Gibbs measures play an important role in many areas of mathematics, including nonlinear dispersive equations with random initial data and stochastic partial differential equations. In…
Classical field theory limit of many-body quantum Gibbs states in 2D and 3D
- Physics
- 2020
We provide a rigorous derivation of nonlinear Gibbs measures in two and three space dimensions, starting from many-body quantum systems in thermal equilibrium. More precisely, we prove that the…
Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Quantum Many-Body States in Dimension d ≤ 3
- Physics
- 2016
We prove that Gibbs measures of nonlinear Schr\"odinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in…
From Bosonic Grand-Canonical Ensembles to Nonlinear Gibbs Measures
- Physics
- 2014
In a recent paper, in collaboration with Mathieu Lewin and Phan Th{\`a}nh Nam, we showed that nonlinear Gibbs measures based on Gross-Pitaevskii like functionals could be derived from many-body…
Gibbs Measures of Nonlinear Schrödinger Equations as Limits of Many-Body Quantum States in Dimensions $${d \leqslant 3}$$d⩽3
- Physics
- 2016
We prove that Gibbs measures of nonlinear Schrödinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in…
De Finetti theorems, mean-field limits and Bose-Einstein condensation
- Physics
- 2015
These notes deal with the mean-field approximation for equilibrium states of N-body systems in classical and quantum statistical mechanics. A general strategy for the justification of effective…
Gibbs measures as unique KMS equilibrium states of nonlinear Hamiltonian PDEs.
- Mathematics
- 2021
The classical Kubo-Martin-Schwinger (KMS) condition is a fundamental property of statistical mechanics characterizing the equilibrium of infinite classical mechanical systems. It was introduced in…
A Microscopic Derivation of Gibbs Measures for Nonlinear Schrödinger Equations with Unbounded Interaction Potentials
- Mathematics
- 2019
We study the derivation of the Gibbs measure for the nonlinear Schrodinger equation (NLS) from many-body quantum thermal states in the high-temperature limit. In this paper, we consider the nonlocal…
A microscopic derivation of time-dependent correlation functions of the 1D cubic nonlinear Schrödinger equation
- MathematicsAdvances in Mathematics
- 2019
Cylindrical Wigner measures
- Mathematics
- 2016
In this paper we study the semiclassical behavior of quantum states acting on the C*-algebra of canonical commutation relations, from a general perspective. The aim is to provide a unified and…
References
SHOWING 1-10 OF 88 REFERENCES
Exponential Relaxation to Equilibrium for a One-Dimensional Focusing Non-Linear Schrödinger Equation with Noise
- Mathematics, Physics
- 2014
We construct generalized grand-canonical- and canonical Gibbs measures for a Hamiltonian system described in terms of a complex scalar field that is defined on a circle and satisfies a nonlinear…
The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases
- Physics, Mathematics
- 2014
We study the ground state of a trapped Bose gas, starting from the full many-body Schrodinger Hamiltonian, and derive the nonlinear Schrodinger energy functional in the limit of large particle…
Mean field limit for bosons and propagation of Wigner measures
- Physics
- 2009
We consider the N-body Schrodinger dynamics of bosons in the mean field limit with a bounded pair-interaction potential. According to the previous work [Ammari, Z. and Nier, F., “Mean field limit for…
REMARKS ON THE QUANTUM DE FINETTI THEOREM FOR BOSONIC SYSTEMS
- Mathematics
- 2013
The quantum de Finetti theorem asserts that the k-body density matrices of a N-body bosonic state approach a convex combination of Hartree states (pure tensor powers) when N is large and k fixed. In…
Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein
- Physics
- 2014
These lecture notes treat the mean-field approximation for equilibrium states of N body systems in classical and quantum statistical mechanics. A general strategy to justify effective models based on…
Long time dynamics for the one dimensional non linear Schr\"odinger equation
- Mathematics
- 2010
In this article, we first present the construction of Gibbs measures associated to nonlinear Schr\"odinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is…
Examples of Bosonic de Finetti States over Finite Dimensional Hilbert Spaces
- Mathematics, Physics
- 2005
According to the Quantum de Finetti Theorem, locally normal infinite particle states with Bose–Einstein symmetry can be represented as mixtures of infinite tensor powers of vector states. This note…
Statistical mechanics of the nonlinear Schrödinger equation
- Mathematics
- 1988
AbstractWe investigate the statistical mechanics of a complex fieldø whose dynamics is governed by the nonlinear Schrödinger equation. Such fields describe, in suitable idealizations, Langmuir waves…