Der Endlichkeitssatz der Invarianten endlicher Gruppen

@article{NoetherDerED,
  title={Der Endlichkeitssatz der Invarianten endlicher Gruppen},
  author={Emmy Noether},
  journal={Mathematische Annalen},
  volume={77},
  pages={89-92}
}
Im folgenden soll ein ganz elementarer nut auf der Theorle der symmetrischen Funl~ionen beruhenderEndlichkeitsbeweis der Invarianten e~//id~er Gruppen gebracht werden, der zugleich eine wirkliche Angabe des.vollen Systems liefert; w~hrend der gew~hnliche, auf das Hflber~scho Theorem yon der Modulbasis (Ann. 36) sich stiitzende Beweis nut Existenzbeweis is~.*) Die endliche Gruppe ~ bestohe aus den h linoaren Transforma~ionon (yon nichtverschwindender Determinante) A~. -A~, wobei dutch A~ die… Expand
Gruppenoperationen, Invariantenringe und Quotienten
Nachdem wir im ersten Kapitel mehrere Beispiele eingehend untersucht haben, wollen wir uns nun den Grundlagen zuwenden. Die algebraischen Gruppen — das sind die abgeschlossenen Untergruppen derExpand
Poincaredualitätsalgebren, Koinvarianten und Wu-Klassen
Certain algebras of coinvariants have the extra structure of a Poincare duality algebra. We describe and characterize some of these Poincare duality algebras via Macaulay inverses of the idealExpand
Vollständige algebraische Beschreibung und Parallelisierung von translations- und rotationsinvarianten Transformationen für Grauwertbilder
TLDR
Algorithms for the determination of translation- and rotation invariant features for gray-scale images are presented and the communication demands arising from the algorithm are mapped simultaneously to a de Bruijn interconnection structure. Expand
Degree bounds for syzygies of invariants
Abstract Suppose that G is a linearly reductive group. Good degree bounds for generators of invariant rings were given in (Proc. Amer. Math. Soc. 129 (4) (2001) 955). Here we study minimal freeExpand
Orbit Computation for Atomically Generated Subgroups of Isometries of Zn
TLDR
Instead of all subgroups of isometries, this paper focuses on a special class of sub groups, namely atomically generated subgroups, and introduces a newly introduced notion that is key to inheriting the semidirect-product structure from the whole group of isometricries. Expand
Multiplicative Invariants of Root Lattices Multiplicative Invariants of Root Lattices
Multiplicative Invariants of Root Lattices Jessica A. Hamm DOCTOR OF PHILOSOPHY Temple University, August, 2014 Dr. Martin Lorenz, Chair Classical invariant theory is a field of study within abstractExpand
Algebraic investigations in Landau model of structural phase transitions
First we introduce the basic notions of the theory of permutation representations: stabilizers, orbits, stable subsets and strata. Then we consider the relation between permutation and linearExpand
Efficient Generation of the Ring of Invariants
We shall use the Binet–Minc formula in the theory of permanents to prove David Richman's theorem: LetGbe a finite group acting onA≔R[a1,…, ar], whereRis any commutative ring with 1/|G|!∈R. Then theExpand
AG-Invariantentheorie NOETHER ’ S BOUND IN THE INVARIANT THEORY OF FINITE GROUPS AND VECTOR INVARIANTS OF ITERATED WREATH PRODUCTS OF SYMMETRIC GROUPS LARRY
Let ρ : G GL(n, IF) be a faithful representation of the finite group G over the field IF. In 1916 E. Noether proved that for IF of characteristic zero the ring of invariants IF[V ]G is generated asExpand
The Two Mathematical Careers of Emmy Noether
The received view of Emmy Noether as the champion of David Hilbert’s new style of algebra is not false (as you can see from the fact that Hermann Weyl urged this view). But it seriously understatesExpand
...
1
2
3
4
5
...