Der Endlichkeitssatz der Invarianten endlicher Gruppen

@article{Noether1915DerED,
  title={Der Endlichkeitssatz der Invarianten endlicher Gruppen},
  author={Emmy Noether},
  journal={Mathematische Annalen},
  year={1915},
  volume={77},
  pages={89-92}
}
  • E. Noether
  • Published 1 March 1915
  • Mathematics
  • Mathematische Annalen
Im folgenden soll ein ganz elementarer nut auf der Theorle der symmetrischen Funl~ionen beruhenderEndlichkeitsbeweis der Invarianten e~//id~er Gruppen gebracht werden, der zugleich eine wirkliche Angabe des.vollen Systems liefert; w~hrend der gew~hnliche, auf das Hflber~scho Theorem yon der Modulbasis (Ann. 36) sich stiitzende Beweis nut Existenzbeweis is~.*) Die endliche Gruppe ~ bestohe aus den h linoaren Transforma~ionon (yon nichtverschwindender Determinante) A~. -A~, wobei dutch A~ die… 

Gruppenoperationen, Invariantenringe und Quotienten

Nachdem wir im ersten Kapitel mehrere Beispiele eingehend untersucht haben, wollen wir uns nun den Grundlagen zuwenden. Die algebraischen Gruppen — das sind die abgeschlossenen Untergruppen der

Poincaredualitätsalgebren, Koinvarianten und Wu-Klassen

Certain algebras of coinvariants have the extra structure of a Poincare duality algebra. We describe and characterize some of these Poincare duality algebras via Macaulay inverses of the ideal

Vollständige algebraische Beschreibung und Parallelisierung von translations- und rotationsinvarianten Transformationen für Grauwertbilder

Algorithms for the determination of translation- and rotation invariant features for gray-scale images are presented and the communication demands arising from the algorithm are mapped simultaneously to a de Bruijn interconnection structure.

Degree bounds for syzygies of invariants

Multiplicative Invariants of Root Lattices Multiplicative Invariants of Root Lattices

Multiplicative Invariants of Root Lattices Jessica A. Hamm DOCTOR OF PHILOSOPHY Temple University, August, 2014 Dr. Martin Lorenz, Chair Classical invariant theory is a field of study within abstract

Invariant theory of free bicommutative algebras

. The variety B of bicommutative algebras consists of all nonassociative algebras satisfying the polynomial identities of right- and left-commutativity ( x 1 x 2 ) x 3 = ( x 1 x 3 ) x 2 and x 1 ( x 2

Algebraic investigations in Landau model of structural phase transitions

First we introduce the basic notions of the theory of permutation representations: stabilizers, orbits, stable subsets and strata. Then we consider the relation between permutation and linear

Orbit Computation for Atomically Generated Subgroups of Isometries of Zn

This paper focuses on a special class of subgroups of isometries, namely atomically generated subgroups, and proposes a practical algorithm that can partition any finite subset of Z based on the orbit relation.

Efficient Generation of the Ring of Invariants

We shall use the Binet–Minc formula in the theory of permanents to prove David Richman's theorem: LetGbe a finite group acting onA≔R[a1,…, ar], whereRis any commutative ring with 1/|G|!∈R. Then the

AG-Invariantentheorie NOETHER ’ S BOUND IN THE INVARIANT THEORY OF FINITE GROUPS AND VECTOR INVARIANTS OF ITERATED WREATH PRODUCTS OF SYMMETRIC GROUPS LARRY

Let ρ : G GL(n, IF) be a faithful representation of the finite group G over the field IF. In 1916 E. Noether proved that for IF of characteristic zero the ring of invariants IF[V ]G is generated as
...