2 Excerpts

# Delay-Coupled Mathieu Equations in Synchrotron Dynamics

- 2015

#### Abstract

This paper investigates the dynamics of two couplecd Mathieu equations. The coupling functions involve both delayed and nondelay terms. We use a perturbation method to obtain a slow flow which is then studied using Routh-Hurwitz stability criterion. Analytic results are shown to compare favorably with numerical integration. The numerical integrator, DDE23, is shown to inadvertently add damping. It is found that the nondelayed coupling parameter plays a significant role in the system dynamics. We note that our interest in this problem comes from an application to the design of nuclear accelerators.