Degeneration of Shrinking Ricci Solitons

  title={Degeneration of Shrinking Ricci Solitons},
  author={Zhenlei Zhang},
Let (Y, d) be a Gromov-Hausdorff limit of closed shrinking Ricci solitons with uniformly upper bounded diameter and lower bounded volume. We prove that off a closed subset of codimension at least 2, Y is a smooth manifold satisfying a shrinking Ricci soliton equation. 

From This Paper

Topics from this paper.
2 Citations
21 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 21 references

Compactness theorems for Kähler Einstein manifolds of dimension 3 and up

  • G. Tian
  • J. Diff. Geom., 35
  • 1992
Highly Influential
3 Excerpts

Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature

  • F. Q. Fang, X. D. Li, Z. L. Zhang
  • Annal. L’Inst. Four., 59
  • 2009
3 Excerpts

Maximal solutions of normalized Ricci flow on 4-manifolds

  • F. Q. Fang, Y. G. Zhang, Z. L. Zhang
  • Comm. Math. Phys., 283
  • 2008
2 Excerpts

Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons

  • Z. L. Zhang
  • C. R. Acad. Sci. Paris, Ser. I, 345
  • 2007
1 Excerpt

Compariton theory for the smooth measure metric space, in 4th ICCM

  • G. F. Wei, W. Wylie
  • 2007
2 Excerpts

Einstein manifolds

  • A. L. Besse
  • Springer
  • 2007
1 Excerpt

Metric structures for Riemannian and non-Riemannian spaces

  • M. Gromov
  • with appendices by M. Katz, P. Pansu and S…
  • 2007
1 Excerpt

Similar Papers

Loading similar papers…