Defective Age-Dependent Metaplasticity in a Mouse Model of Alzheimer's Disease.

Abstract

UNLABELLED Much of the molecular understanding of synaptic pathology in Alzheimer's disease (AD) comes from studies of various mouse models that express familial AD (FAD)-linked mutations, often in combinations. Most studies compare the absolute magnitudes of long-term potentiation (LTP) and long-term depression (LTD) to assess deficits in bidirectional synaptic plasticity accompanying FAD-linked mutations. However, LTP and LTD are not static, but their induction threshold is adjusted by overall neural activity via metaplasticity. Hence LTP/LTD changes in AD mouse models may reflect defects in metaplasticity processes. To determine this, we examined the LTP/LTD induction threshold in APPswe;PS1ΔE9 transgenic (Tg) mice across two different ages. We found that in young Tg mice (1 month), LTP is enhanced at the expense of LTD, but in adults (6 months), the phenotype is reversed to promote LTD and reduce LTP, compared to age-matched wild-type (WT) littermates. The apparent opposite phenotype across age was due to an initial offset in the induction threshold to favor LTP and the inability to undergo developmental metaplasticity in Tg mice. In WTs, the synaptic modification threshold decreased over development to favor LTP and diminish LTD in adults. However, in Tg mice, the magnitudes of LTP and LTD stayed constant across development. The initial offset in LTP/LTD threshold in young Tg mice did not accompany changes in the LTP/LTD induction mechanisms, but altered AMPA receptor phosphorylation and appearance of Ca(2+)-permeable AMPA receptors. We propose that the main synaptic defect in AD mouse models is due to their inability to undergo developmental metaplasticity. SIGNIFICANCE STATEMENT This work offers a new insight that metaplasticity defects are central to synaptic dysfunctions seen in AD mouse models. In particular, we demonstrate that the apparent differences in LTP/LTD magnitude seen across ages in AD transgenic mouse models reflect the inability to undergo a normal developmental shift in metaplasticity.

DOI: 10.1523/JNEUROSCI.5289-14.2015
020406020162017
Citations per Year

Citation Velocity: 20

Averaging 20 citations per year over the last 2 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Megill2015DefectiveAM, title={Defective Age-Dependent Metaplasticity in a Mouse Model of Alzheimer's Disease.}, author={Andrea Megill and Trinh N. P. Tran and Kiara Eldred and Nathanael J Lee and Philip C . Wong and Hyang-Sook Hoe and Alfredo Kirkwood and Hey-Kyoung Lee}, journal={The Journal of neuroscience : the official journal of the Society for Neuroscience}, year={2015}, volume={35 32}, pages={11346-57} }