Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-Plasmid/Liposome (SOD2-PL) intratracheal gene therapy.

@article{Epperly2000DecreasedPR,
  title={Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-Plasmid/Liposome (SOD2-PL) intratracheal gene therapy.},
  author={Michael Wayne Epperly and Charles J. Epstein and Elizabeth L. Travis and Joel S. Greenberger},
  journal={Radiation research},
  year={2000},
  volume={154 4},
  pages={365-74}
}
The pulmonary ionizing radiation sensitivity of C57BL/6 Sod2(+/-) mice heterozygous for MnSOD deficiency was compared to that Sod2(+/+) control littermates. Embryo fibroblast cell lines from Sod2(-/-) (neonatal lethal) or Sod2(+/-) mice produced less biochemically active MnSOD and demonstrated a significantly greater in vitro radiosensitivity. No G(2)/M-phase cell cycle arrest after 5 Gy was observed in Sod2(-/-) cells compared to the Sod2(+/-) or Sod2(+/+) lines. Subclonal Sod2(-/-) or Sod2… CONTINUE READING