Decomposition of pointwise finite-dimensional persistence modules

@article{CrawleyBoevey2012DecompositionOP,
  title={Decomposition of pointwise finite-dimensional persistence modules},
  author={W. Crawley-Boevey},
  journal={arXiv: Representation Theory},
  year={2012}
}
  • W. Crawley-Boevey
  • Published 2012
  • Mathematics
  • arXiv: Representation Theory
  • We show that a persistence module (for a totally ordered indexing set) consisting of finite-dimensional vector spaces is a direct sum of interval modules. The result extends to persistence modules with the descending chain condition on images and kernels. 
    120 Citations
    Decomposition of persistence modules
    • 22
    • PDF
    Bottleneck Stability for Generalized Persistence Diagrams
    • 9
    • PDF
    Exterior Critical Series of Persistence Modules
    • 2
    • PDF
    Topological spaces of persistence modules and their properties
    • 20
    • Highly Influenced
    • PDF
    Interval Decomposition of Infinite Zigzag Persistence Modules
    • 15
    • PDF
    Persistent Homology and the Upper Box Dimension
    • 7
    • PDF
    Persistence modules with operators in Morse and Floer theory
    • 26
    • PDF
    Structure of Semi-Continuous Q-Tame Persistence Modules.
    • PDF

    References

    SHOWING 1-9 OF 9 REFERENCES
    Persistence stability for geometric complexes
    • 155
    • PDF
    Computing persistent homology
    • 896
    • PDF
    Proximity of persistence modules and their diagrams
    • 332
    • PDF
    Decomposition of graded modules
    • 25
    • Highly Influential
    • PDF
    The indecomposable representations of the dihedral 2-groups
    • 139
    • PDF
    Persistence Barcodes for Shapes
    • 171
    Barcodes: The persistent topology of data
    • 781
    • PDF