Decomposition of pointwise finite-dimensional persistence modules
@article{CrawleyBoevey2012DecompositionOP, title={Decomposition of pointwise finite-dimensional persistence modules}, author={W. Crawley-Boevey}, journal={arXiv: Representation Theory}, year={2012} }
We show that a persistence module (for a totally ordered indexing set) consisting of finite-dimensional vector spaces is a direct sum of interval modules. The result extends to persistence modules with the descending chain condition on images and kernels.
120 Citations
Topological spaces of persistence modules and their properties
- Mathematics, Computer Science
- J. Appl. Comput. Topol.
- 2018
- 20
- Highly Influenced
- PDF
Persistent Homology and the Upper Box Dimension
- Computer Science, Mathematics
- Discret. Comput. Geom.
- 2021
- 7
- PDF
Universality of persistence diagrams and the bottleneck and Wasserstein distances
- Mathematics, Computer Science
- ArXiv
- 2019
- 1
- PDF
References
SHOWING 1-9 OF 9 REFERENCES
Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents
- Mathematics
- 1961
- 406
- PDF