Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets taly , 135 ,-n of the filters is ling

@inproceedings{Bacchellia2005DecompositionAR,
  title={Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets taly , 135 ,-n of the filters is ling},
  author={Barbara Bacchellia and Mira Bozzinia and Maria-Leonor Varasc},
  year={2005}
}
  • Barbara Bacchellia, Mira Bozzinia, Maria-Leonor Varasc
  • Published 2005
In this paper, we build a multidimensional wavelet decomposition based on polyharmonic B-splines. The pre wavelets are polyharmonic splines and so not tensor products of univariate wavelets. Explicit constructio filters specified by the classical dyadic scaling relations is given and the decay of the functions and the shown. We then design the decomposition/recomposition algorithm by means of downsampling/upsamp convolution products. 
Highly Cited
This paper has 18 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 28 references

polyarmoniques cardinales: interpolation, quasi-interpolation, filtrage, Thèse d’Etat

  • C. Rabut, B-splines
  • Univer Toulouse,
  • 1990
Highly Influential
4 Excerpts

A fast wavelet algorithm for multidimensional signal using polyharmonic spline A

  • B. Bacchelli, M. Bozzini, C. Rabut
  • Cohen, J.L. Merrien, L.L. Schumaker (Eds…
  • 2003
2 Excerpts

On the errors of a multidimensional MRA based on non separable scaling fun Int

  • B. Bacchelli, M. Bozzini, M. Rossini
  • J. Wavelets Multiresolut. Informat. Process.
  • 2003
1 Excerpt

Spline type summability for multivariate sampling

  • W. R. Madych
  • Analysis of divergence
  • 1997
1 Excerpt

On the construction of multivariate (pre) wavelets

  • C. de Boor, R. A. De Vore, A. Ron
  • Constr. Approx
  • 1993
1 Excerpt

Cardinal interpolation with differences of tempered distributions

  • C. Chui, C. K. Ward, J. D. Jetter, K. Cardinal
  • Ad in the theory and applications of radial basis…
  • 1992

Cardinal interpolation with differences of tempered distributions . Ad in the theory and applications of radial basis functions

  • C. K. Ward Chui, J. D. Jetter, K. Cardinal
  • Comput . Math . Appl .
  • 1992

Similar Papers

Loading similar papers…