Decoding by linear programming

@article{Cands2005DecodingBL,
  title={Decoding by linear programming},
  author={E. Cand{\`e}s and T. Tao},
  journal={IEEE Transactions on Information Theory},
  year={2005},
  volume={51},
  pages={4203-4215}
}
  • E. Candès, T. Tao
  • Published 2005
  • Mathematics, Computer Science
  • IEEE Transactions on Information Theory
  • This paper considers a natural error correcting problem with real valued input/output. We wish to recover an input vector f/spl isin/R/sup n/ from corrupted measurements y=Af+e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the /spl lscr//sub 1/-minimization problem (/spl par/x/spl par//sub /spl lscr… CONTINUE READING
    6,270 Citations
    The limits of error correction with lp decoding
    • M. Wang, W. Xu, A. Tang
    • Computer Science, Mathematics
    • 2010 IEEE International Symposium on Information Theory
    • 2010
    • 2
    • PDF
    Encoding the /spl lscr//sub p/ ball from limited measurements
    • 27
    • PDF
    Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
    • E. Candès, T. Tao
    • Mathematics, Computer Science
    • IEEE Transactions on Information Theory
    • 2006
    • 6,096
    • PDF
    Phase Transitions in Error Correcting and Compressed Sensing by ℓ1 Linear Programming
    • 1
    Highly Robust Error Correction byConvex Programming
    • 173
    • PDF
    Sparse recovery via convex optimization
    • 6
    • PDF
    Equivalent mean breakdown points for linear codes and compressed sensing by ℓ1 optimization
    • R. Ashino, R. Vaillancourt
    • Mathematics
    • 2010 10th International Symposium on Communications and Information Technologies
    • 2010
    • 4
    Instance optimal decoding by thresholding in compressed sensing
    • 29
    • Highly Influenced
    • PDF
    Geometric approach to error-correcting codes and reconstruction of signals
    • 182
    • PDF
    Compressed sensing
    • D. Donoho
    • Computer Science, Mathematics
    • IEEE Transactions on Information Theory
    • 2006
    • 13,027
    • PDF

    References

    SHOWING 1-10 OF 53 REFERENCES
    Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
    • 13,502
    • PDF
    Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
    • E. Candès, T. Tao
    • Mathematics, Computer Science
    • IEEE Transactions on Information Theory
    • 2006
    • 6,096
    • PDF
    Using linear programming to Decode Binary linear codes
    • 499
    • PDF
    Uncertainty principles and ideal atomic decomposition
    • 1,870
    • PDF
    Decoding error-correcting codes via linear programming
    • 232
    • PDF
    LP Decoding Corrects a Constant Fraction of Errors
    • 115
    • PDF
    LP decoding achieves capacity
    • 48
    • PDF
    Condition numbers of random matrices
    • S. Szarek
    • Mathematics, Computer Science
    • J. Complex.
    • 1991
    • 136
    • PDF
    Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization
    • D. Donoho, Michael Elad
    • Medicine, Computer Science
    • Proceedings of the National Academy of Sciences of the United States of America
    • 2003
    • 2,629
    • PDF