De integralibus quibusdam definitis et seriebus infinitis.

@article{KummerDeIQ,
  title={De integralibus quibusdam definitis et seriebus infinitis.},
  author={Ernst Eduard Kummer},
  journal={Journal f{\"u}r die reine und angewandte Mathematik (Crelles Journal)},
  volume={1837},
  pages={228 - 242}
}
  • E. Kummer
  • Mathematics
  • Journal für die reine und angewandte Mathematik (Crelles Journal)
. 1.2 a. β « ._ _ d. l— JT^H -fTT^i E2.3.X» ·" ----lade earutn serierum transforraationes loco citato inventae hoc modo ex hiberi possunt: 4. <Ρ(α,β,*) = <?. φ(β— α, β, *), 5. ψ (α, a?) = β±·*?)(α— ϊ,2α— 1,±4/·*), quae formula eadem est ac 6. <P(a,2a,*) = βΙψ(α+1, et • / n \ xli(3—cc — l)/-., n ι Λ \ ι a^ fa — / 7. xte »*) = n(^-i) Φ(^>«— +l^) + -nn^i Quibus praeparatis primum quaeationem instituam de integral! » — 8. γ — ί u«-.e~.e~^ du, t/0 ex quo eequitur * °° * w-. e~. i^ du, doc o < 0 

On the zeros of certain confluent hypergeometric functions

The theory of continued fractions is used to derive the following results which hold for — |<a<oo: (1) If iZ^oc; 2a + 1 ; z) = 0 [^(a + 1 ; 2a + 1 ; z) = 0] then Re(z)>0 [<0]. (It is deduced from

A Conjectured Integer Sequence Arising From the Exponential Integral

The asymptotic behaviour of the sequences $(a_n) and $(b-n) are considered as $n \to \infty$, showing that they are closely related, and proving a conjecture of Bruno Salvy regarding $(b_n).

Mittag-Leffler Functions with Three Parameters

The Prabhakar generalized Mittag-Leffler function [Pra71] is defined as $$\displaystyle{ E_{\alpha,\beta }^{\gamma }(z):=\sum _{ n=0}^{\infty } \frac{(\gamma )_{n}} {n!\varGamma (\alpha n+\beta

On the Nevanlinna characteristic of confluent hypergeometric functions

ABSTRACT A confluent hypergeometric function (Kummer's function) is a generalized hypergeometric series introduced by Kummer in 1837 [De integralibus quibusdam definitis et seriebus infinitis. J

Multi-index Mittag-Leffler Functions

Consider the function defined for \(\alpha _{1},\ \alpha _{2} \in \mathbb{R}\) (α 1 2 +α 2 2 ≠ 0) and \(\beta _{1},\beta _{2} \in \mathbb{C}\) by the series $$\displaystyle{ E_{\alpha _{1},\beta

Analysing (cosmological) singularity avoidance in loop quantum gravity using U$(1)^3$ coherent states and Kummer's functions

Using a new procedure based on Kummer’s Confluent Hypergeometric Functions, we investigate the question of singularity avoidance in loop quantum gravity (LQG) in the context of U(1) complexifier

Historical Overview of the Mittag-Leffler Functions

Gosta Magnus Mittag-Leffler was born on March 16, 1846, in Stockholm, Sweden. His father, John Olof Leffler, was a school teacher, and was also elected as a member of the Swedish Parliament. His

An Analytical and Numerical Detour for the Riemann Hypothesis

From the functional equation of Riemann's zeta function, new insight is given into Hadamard's product formula and the method can be extended to other meromorphic functions, in the neighborhood of isolated zeros, inspired by the Weierstraß canonical form.
...