DIFFUSION IN ONE DIMENSIONAL RANDOM MEDIUM AND HYPERBOLIC BROWNIAN MOTION

@inproceedings{Comtet1995DIFFUSIONIO,
  title={DIFFUSION IN ONE DIMENSIONAL RANDOM MEDIUM AND HYPERBOLIC BROWNIAN MOTION},
  author={Alain Comtet and C{\'e}cile Monthus},
  year={1995}
}
Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. We analyse in detail this relationship and study various distributions using stochastic calculus and functional integration. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 17 REFERENCES

J. Phys. I (France)

  • C Monthus, A Comtet
  • J. Phys. I (France)
  • 1994

Ins. Math. Econ

  • M Yor
  • Ins. Math. Econ
  • 1993

Adv. Appl. Prob

  • M Yor
  • Adv. Appl. Prob
  • 1992

Phys. Rev. A J. Stat. Phys. Chem. Phys

  • S F Burlatsky, G H Oshanin, A V Mogutov, M Moreau
  • Phys. Rev. A J. Stat. Phys. Chem. Phys
  • 1992

Ins.: Math. and Eco. Geman and M. Yor, Math. Fin

  • D Dufresne, Scand J Act
  • Ins.: Math. and Eco. Geman and M. Yor, Math. Fin
  • 1990

Phys. A : Math. Gen. Phys.Rev.Lett

  • A Hüffmann
  • Phys. A : Math. Gen. Phys.Rev.Lett
  • 1990

Phys. Rep. Ann. Phys

  • J P Bouchaud, A Georges
  • Phys. Rep. Ann. Phys
  • 1988

Ideas and methods in Quantum and Statistical Physics

  • A Comtet
  • Ann. Phys
  • 1987

Chaos in classical and quantum mechanics

  • N Balazs, A Voros
  • Phys. Rep
  • 1986

Similar Papers

Loading similar papers…