Corpus ID: 119640308

Cusps, Congruence Groups and Monstrous Dessins

@article{Tatitscheff2018CuspsCG,
  title={Cusps, Congruence Groups and Monstrous Dessins},
  author={Valdo Tatitscheff and Y. He and J. McKay},
  journal={arXiv: Number Theory},
  year={2018}
}
  • Valdo Tatitscheff, Y. He, J. McKay
  • Published 2018
  • Mathematics, Physics
  • arXiv: Number Theory
  • We study general properties of the dessins d'enfants associated with the Hecke congruence subgroups $\Gamma_0(N)$ of the modular group $\mathrm{PSL}_2(\mathbb{R})$. The definition of the $\Gamma_0(N)$ as the stabilisers of couples of projective lattices in a two-dimensional vector space gives an interpretation of the quotient set $\Gamma_0(N)\backslash\mathrm{PSL}_2(\mathbb{R})$ as the projective lattices $N$-hyperdistant from a reference one, and hence as the projective line over the ring… CONTINUE READING

    Paper Mentions

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 19 REFERENCES
    The Grothendieck theory of dessins d'enfants
    202
    Monstrous moonshine and monstrous Lie superalgebras
    487
    Arithmetic groups and the affine E8 Dynkin diagram
    6
    Sporadic and Exceptional
    8
    Noncommutative Geometry of Groups Like Γ0(N)
    4
    Dessins d'Enfants on Riemann Surfaces
    37
    ON THE GENERA OF X0(N)
    5
    ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD
    436
    The Monstrous Moonshine
    183