Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53.


To elucidate possible mechanisms of anti-angiogenic activity by curcumin, we performed cDNA microarray and found that curcumin modulated cell cycle related gene expression. For further confirmation, DNA contents and expression levels of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CDKIs) were examined by FACS analysis and Western blotting, respectively. Curcumin was found to induce G0/G1 and/or G2/M phase cell cycle arrest, up-regulate CDKIs, p21WAF1/CIP1, p27KIP1, and p53, and slightly down-regulate cyclin B1 and cdc2 in ECV304 cells. However, expression level of other cyclins and CDKs were not changed by curcumin. We, therefore, conclude that the up-regulation of CDKIs by curcumin plays a critical role in the regulation of cell cycle distribution in these cells, which may have a major role in anti-angiogenic activity of curcumin.

Showing 1-10 of 27 extracted citations


Citations per Year

456 Citations

Semantic Scholar estimates that this publication has received between 143 and 1,071 citations based on the available data.

See our FAQ for additional information.