Crystal structure of the ternary complex of a NaV C-terminal domain, a fibroblast growth factor homologous factor, and calmodulin.

Abstract

Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca²⁺-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.

DOI: 10.1016/j.str.2012.05.001
010020020132014201520162017
Citations per Year

552 Citations

Semantic Scholar estimates that this publication has 552 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Wang2012CrystalSO, title={Crystal structure of the ternary complex of a NaV C-terminal domain, a fibroblast growth factor homologous factor, and calmodulin.}, author={Chaojian Wang and Ben C-P Chung and Haidun Yan and Seok-yong Lee and Geoffrey S Pitt}, journal={Structure}, year={2012}, volume={20 7}, pages={1167-76} }