Crystal Structure of an Active Form of Human MMP-1

Abstract

The extracellular matrix is a dynamic environment that constantly undergoes remodelling and degradation during vital physiological processes such as angiogenesis, wound healing, and development. Unbalanced extracellular matrix breakdown is associated with many diseases such as arthritis, cancer and fibrosis. Interstitial collagen is degraded by matrix metalloproteinases with collagenolytic activity by MMP-1, MMP-8 and MMP-13, collectively known as the collagenases. Matrix metalloproteinase 1 (MMP-1) plays a pivotal role in degradation of interstitial collagen types I, II, and III. Here, we report the crystal structure of the active form of human MMP-1 at 2.67 A resolution. This is the first MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc. Comparing this structure with the human proMMP-1 shows significant structural differences, mainly in the relative orientation of the hemopexin domain, between the pro form and active form of the human enzyme.

020406020072008200920102011201220132014201520162017
Citations per Year

129 Citations

Semantic Scholar estimates that this publication has 129 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Iyer2006CrystalSO, title={Crystal Structure of an Active Form of Human MMP-1}, author={Shalini Iyer and Robert Visse and Hideaki Nagase and K. Ravi Acharya}, booktitle={Journal of molecular biology}, year={2006} }