Critical percolation exploration path and SLE 6 : a proof of convergence

  title={Critical percolation exploration path and SLE 6 : a proof of convergence},
  author={Federico Camia and Charles M. Newman},
It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE6. We provide here a detailed proof, which relies on Smirnov’s theorem that crossing probabilities have a conformally invariant scaling limit (given by Cardy’s formula). The version of convergence to SLE6 that we prove suffices for the Smirnov–Werner derivation of certain critical percolation crossing exponents and for our… CONTINUE READING


Publications referenced by this paper.

percolation in the plane. I. Conformal invariance and Cardy’s formula. II. Continuum scaling limit. (long version

  • Smirnov, S.Critical
  • dated Nov
  • 2001
Highly Influential
31 Excerpts

Boundary Behaviour of Conformal Maps

  • Pommerenke, Ch.
  • Springer, Berlin, Heidelberg, New York
  • 1992
Highly Influential
8 Excerpts

Sur la représentation conforme de domaines variables

  • T. Radó
  • Acta Sci. Math. (Szeged) 1, 180–186
  • 1923
Highly Influential
4 Excerpts

Über eine Eigenschaft der Abbildungsfunktionen bei konformer Abbildung

  • R. Courant
  • Göttinger Nachr., pp.101–109
  • 1914
Highly Influential
6 Excerpts

Similar Papers

Loading similar papers…