Critical Points in Nuclei and Interacting Boson Model Intrinsic States

@article{Ginocchio2004CriticalPI,
  title={Critical Points in Nuclei and Interacting Boson Model Intrinsic States},
  author={Joseph N. Ginocchio and A. Leviatan},
  journal={arXiv: Nuclear Theory},
  year={2004},
  pages={191-200}
}
We consider properties of critical points in the interacting boson model, corresponding to flat-bottomed potentials as encountered in a second-order phase transition between spherical and deformed $\gamma$-unstable nuclei. We show that intrinsic states with an effective $\beta$-deformation reproduce the dynamics of the underlying non-rigid shapes. The effective deformation can be determined from the the global minimum of the energy surface after projection onto the appropriate symmetry. States… 

Figures and Tables from this paper

References

SHOWING 1-10 OF 15 REFERENCES
THE INTERACTING BOSON MODEL
This chapter examines the algebraic and geometric properties of the interacting boson model-1, and reviews the interacting boson model-2. Explains that the model was originally introduced with only
Phys. Rev. Lett
  • Phys. Rev. Lett
  • 2003
Phys. Rev. C
  • Phys. Rev. C
  • 2002
Phys. Rev. C
  • Phys. Rev. C
  • 2002
Phys. Rev. C
  • Phys. Rev. C
  • 2002
Phys. Rev. C
  • Phys. Rev. C
  • 2002
Phys. Rev. C
  • Phys. Rev. C
  • 2001
Phys. Rev. Lett
  • Phys. Rev. Lett
  • 2000
Phys. Rev. Lett
  • Phys. Rev. Lett
  • 2000
Phys. Rev. Lett
  • Phys. Rev. Lett
  • 1987
...
1
2
...