# Counting Sheaves on Calabi–Yau and Abelian Threefolds

@article{Gulbrandsen2013CountingSO, title={Counting Sheaves on Calabi–Yau and Abelian Threefolds}, author={Martin G. Gulbrandsen}, journal={arXiv: Algebraic Geometry}, year={2013}, pages={535-548} }

We survey the foundations for Donaldson–Thomas invariants for stable sheaves on algebraic threefolds with trivial canonical bundle, with emphasis on the case of abelian threefolds.

#### One Citation

The DT/PT correspondence for smooth curves

- Mathematics
- 2018

We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi–Yau threefold. We exploit a local study of the… Expand

#### References

SHOWING 1-10 OF 23 REFERENCES

Cycle groups for Artin stacks

- Mathematics
- 1999

We construct an algebraic homology functor for Artin stacks of finite type over a field, and we develop intersection-theoretic properties.

DERIVED CATEGORIES OF COHERENT SHEAVES ON ABELIAN VARIETIES AND EQUIVALENCES BETWEEN THEM

- Mathematics
- 1997

We study derived categories of coherent sheaves on Abelian varieties. We give a criterion for the equivalence of the derived categories on two Abelian varieties and describe the autoequivalence group… Expand

Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties

- Mathematics
- 1996

We introduce a method of constructing the virtual cycle of any scheme associated with a tangent-obstruction complex. We apply this method to constructing the virtual moduli cycle of the moduli of… Expand

Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes

- Mathematics
- 2008

We give a universal approach to the deformation-obstruction theory of objects of the derived category of coherent sheaves over a smooth projective family. We recover and generalise the obstruction… Expand

Donaldson-Thomas type invariants via microlocal geometry

- Mathematics
- 2009

We prove that Donaldson-Thomas type invariants are equal to weighted Euler characteristics of their moduli spaces. In particular, such invariants depend only on the scheme structure of the moduli… Expand

The geometry of moduli spaces of sheaves

- Mathematics
- 1997

Preface to the second edition Preface to the first edition Introduction Part I. General Theory: 1. Preliminaries 2. Families of sheaves 3. The Grauert-Mullich Theorem 4. Moduli spaces Part II.… Expand

Donaldson–Thomas invariants for complexes on abelian threefolds

- Mathematics
- 2013

Donaldson–Thomas invariants for moduli spaces M of perfect complexes on an abelian threefold X are usually zero. A better object is the quotient $${K=[M/X\times\widehat{X}]}$$ of complexes modulo… Expand

Virtual fundamental classes, global normal cones and Fulton’s canonical classes

- Mathematics
- 2004

This note, written in January 19971, grew out of an attempt to understand references [Be], [BeFa] and [LiTi]. In these papers two related but different methods are presented for the construction of a… Expand

A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations

- Mathematics, Physics
- 1998

We briefly review the formal picture in which a Calabi-Yau n-fold is the complex analogue of an oriented real n-manifold, and a Fano with a fixed smooth anticanonical divisor is the analogue of a… Expand

Symmetric Obstruction Theories and Hilbert Schemes of Points on Threefolds

- Mathematics
- 2005

Recall that in an earlier paper by one of the authors DonaldsonThomas type invariants were expressed as certain weighted Euler characteristics of the moduli space. The Euler characteristic is… Expand