Counterexamples to the well posedness of the Cauchy problem for hyperbolic systems

@inproceedings{Colombini2015CounterexamplesTT,
  title={Counterexamples to the well posedness of the Cauchy problem for hyperbolic systems},
  author={Ferruccio Colombini and Guy M{\'e}tivier},
  year={2015}
}
This paper is concerned with the well posedness of the Cauchy problem for first order symmetric hyperbolic systems in the sense of Friedrichs. The classical theory says that if the coefficients of the system and if the coefficients of the symmetrizer are Lipschitz continuous, then the Cauchy problem is well posed in L 2. When the symmetrizer is Log-Lipschtiz or when the coefficients are analytic or quasi-analytic, the Cauchy problem is well posed C ∞. In this paper we give counterexamples which… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-7 OF 7 REFERENCES

Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem

F. Colombini Cicognani
  • J . Differential Equations
  • 2006

An example of a weakly hyperbolic Cauchy problem not well posed in C ∞

S. Spagnolo Colombini
  • Acta Math .
  • 1982

Gauhtier-Villars

S.Mandelbrojt, Séries adhérentes, Régularisation des suites, Applications
  • Paris
  • 1952

, Sur les équations hyper - boliques avec des coefficients qui ne dépendent que du temps

S. Spagnolo
  • Ann . Scuola Norm . Sup . Pisa Cl . Sci .