Cosmetic surgeries on knots in $S^3$
@article{Ni2010CosmeticSO, title={Cosmetic surgeries on knots in \$S^3\$}, author={Yi Ni and Zhongtao Wu}, journal={arXiv: Geometric Topology}, year={2010} }
Two Dehn surgeries on a knot are called {\it purely cosmetic}, if they yield manifolds that are homeomorphic as oriented manifolds. Suppose there exist purely cosmetic surgeries on a knot in $S^3$, we show that the two surgery slopes must be the opposite of each other. One ingredient of our proof is a Dehn surgery formula for correction terms in Heegaard Floer homology.
134 Citations
Connected sums of knots do not admit purely cosmetic surgeries
- Mathematics
- 2019
Two Dehn surgeries on a knot are called purely cosmetic if their surgered manifolds are homeomorphic as oriented manifolds. Gordon conjectured that non-trivial knots in $S^3$ do not admit purely…
3-braid knots do not admit purely cosmetic surgeries
- Mathematics
- 2020
A pair of surgeries on a knot is called purely cosmetic if the pair of resulting 3-manifolds are homeomorphic as oriented manifolds. An outstanding conjecture predicts that no nontrivial knots admit…
Cable knots do not admit cosmetic surgeries
- MathematicsJournal of Knot Theory and Its Ramifications
- 2019
Two Dehn surgeries on a knot are called purely cosmetic if their surgered manifolds are homeomorphic as oriented manifolds. Gordon conjectured that nontrivial knots in [Formula: see text] do not…
On The Virtual Cosmetic Surgery Conjecture
- Mathematics
- 2017
Let K be a knot in S^3, and M and M' be distinct Dehn surgeries along K. We investigate when M covers M'. When K is a torus knot, we provide a complete classification of such covers. When K is a…
A note on Jones polynomial and cosmetic surgery
- MathematicsCommunications in Analysis and Geometry
- 2019
We show that two Dehn surgeries on a knot $K$ never yield manifolds that are homeomorphic as oriented manifolds if $V_K''(1)\neq 0$ or $V_K'''(1)\neq 0$. As an application, we verify the cosmetic…
Chirally Cosmetic Surgeries and Casson Invariants
- Mathematics
- 2017
We study chirally cosmetic surgeries, that is, a pair of Dehn surgeries on a knot producing homeomorphic 3-manifolds with opposite orientations. Several constraints on knots and surgery slopes to…
Heegaard Floer homology and chirally cosmetic surgeries
- Mathematics, Medicine
- 2021
This work completely classify chirallly cosmetic surgeries on odd alternating pretzel knots, and rule out such surgeries for a large class of Whitehead doubles.
Dehn Surgery on Knots in S3 Producing Nil Seifert Fibered Spaces
- Mathematics
- 2014
We prove that there are exactly 6 Nil Seifert fibred spaces which can be
obtained by Dehn surgeries on non-trefoil knots in S^3, with {60, 144, 156,
288, 300} as the exact set of all such surgery…
On constraints for knots to admit chirally cosmetic surgeries and their calculations
- Mathematics
- 2021
We discuss various constraints for knots in S3 to admit chirally cosmetic surgeries, derived from invariants of 3-manifolds, such as, the quantum SO(3)-invariant, the rank of the Heegaard Floer…
Purely cosmetic surgeries and pretzel knots
- MathematicsPacific Journal of Mathematics
- 2021
We show that all pretzel knots satisfy the (purely) cosmetic surgery conjecture, i.e. Dehn surgeries with different slopes along a pretzel knot provide different oriented three-manifolds.
References
SHOWING 1-10 OF 22 REFERENCES
Cosmetic surgeries on genus one knots
- Mathematics
- 2005
In this paper, we prove that there are no truly cosmetic surgeries on genus one classical knots. If the two surgery slopes have the same sign, we give the only possibilities of reflectively cosmetic…
Cosmetic Surgery in Integral Homology $L$-Spaces
- Mathematics
- 2009
Let $K$ be a non-trivial knot in $S^3$, and let $r$ and $r'$ be two distinct rational numbers of same sign, allowing $r$ to be infinite; we prove that there is no orientation-preserving homeomorphism…
CLOSED 3–MANIFOLDS UNCHANGED BY DEHN SURGERY
- Mathematics
- 1992
If X is the space of the trefoil knot, we can find, for every integer e, two slopes on ∂X, ρe, γe, such that the Dehn fillings X (ρe) and X (γe) are homeomorphic 3-manifolds. The cores of the…
Knot Floer homology and integer surgeries
- Mathematics
- 2004
Let Y be a closed three-manifold with trivial first homology, and let K Y be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered…
Knot Floer homology and rational surgeries
- Mathematics
- 2010
Let K be a rationally null-homologous knot in a three-manifold Y . We construct a version of knot Floer homology in this context, including a description of the Floer homology of a three-manifold…
On the Floer homology of plumbed three-manifolds
- Mathematics
- 2003
We calculate the Heegaard Floer homologies for three-manifolds obtained by plumbings of spheres specified by certain graphs. Our class of graphs is sufficiently large to describe, for example, all…
Knot Floer homology and the four-ball genus
- Mathematics
- 2003
We use the knot filtration on the Heegaard Floer complex to define an integer invariant tau(K) for knots. Like the classical signature, this invariant gives a homomorphism from the knot concordance…
Floer homology and knot complements
- Mathematics
- 2003
We use the Ozsvath-Szabo theory of Floer homology to define an invariant of knot complements in three-manifolds. This invariant takes the form of a filtered chain complex, which we call CF_r. It…