@article{Bai2016CorrigendumT, title={Corrigendum to "On a lemma of Crochemore and Rytter" [Journal of Discrete Algorithms 34 (2015) 18-22]}, author={Haoyue Bai and Antoine Deza and Frantisek Franek}, journal={J. Discrete Algorithms}, year={2016}, volume={38-41}, pages={50-51} }

- Published 2016 in J. Discrete Algorithms
DOI:10.1016/j.jda.2016.05.003

Corollary 4. Let u2 be a proper prefix of v2 that is a proper prefixes of w2 and let u be primitive, then |u| + |v| ≤ |w|. Moreover, if |u| < |v| < 2|u| and either v or w is primitive, then |u| + |v| ≤ |w|. Proof. Let us assume by contradiction that |u| + |v| > |w|. Then by Lemma 3, u = v1, v = v p1 1 v2 and w = v p1 1 v2 v p2 1 for a primitive v1, a proper possibly empty prefix v2 of v1, and t > p2, p1 ≥ p2 ≥ 1. If u is primitive, t = 1 and so t > p2 ≥ 1 is a contradiction. If |v| < 2|u|, then… CONTINUE READING