Correlation Codes in Neuronal Populations

  title={Correlation Codes in Neuronal Populations},
  author={Maoz Shamir and Haim Sompolinsky},
Population codes often rely on the tuning of the mean responses to the stimulus parameters. However, this information can be greatly suppressed by long range correlations. Here we study the efficiency of coding information in the second order statistics of the population responses. We show that the Fisher Information of this system grows linearly with the size of the system. We propose a bilinear readout model for extracting information from correlation codes, and evaluate its performance in… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.


Publications referenced by this paper.
Showing 1-8 of 8 references


H. Sompolinsky, H. Yoon, K. Kang, M. Shamir
Rev. E, , 051904 (2001); H. Yoon and H. Sompolinsky, Advances in Neural Information Processing Systems 11 (pp. 167). Kearns M.J, Solla S.A and Cohn D.A, Eds., • 1999
View 4 Excerpts
Highly Influenced


S. Seung, H. Sompolinsky
Natl. Acad. Sci. USA , 10794 • 1993
View 4 Excerpts
Highly Influenced


E. M. Maynard, N. G. Hatsopoulos, +5 authors J. Neurosci
8083 • 1999
View 2 Excerpts

Neural Computation

L. F. Abbott, P. Dayan
91 • 1999
View 1 Excerpt


D. Lee, N. L. Port, W. Kruse, A. P. Georgopoulos
Neurosci. , 1161 • 1998
View 1 Excerpt


E. Zohary, M. N. Shadlen, W. T. Newsome
140 • 1994
View 2 Excerpts


E. Salinas, L. F. Abbott, J. Comp
, 89 • 1994
View 2 Excerpts


E. Fetz
Yoyoma and W. Smith, Cerebral Cortex • 1991
View 1 Excerpt

Similar Papers

Loading similar papers…