Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm

  title={Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm},
  author={K. Clarkson},
  journal={ACM Trans. Algorithms},
  • K. Clarkson
  • Published 2008
  • Mathematics, Computer Science
  • ACM Trans. Algorithms
  • The problem of maximizing a concave function <i>f</i>(<i>x</i>) in a simplex <i>S</i> can be solved approximately by a simple greedy algorithm. For given <i>k</i>, the algorithm can find a point <i>x</i>(<i>k</i>) on a <i>k</i>-dimensional face of <i>S</i>, such that <i>f</i>(<i>x</i>(<i>k</i>)) ≥ <i>f</i>(<i>x</i>*) - <i>O</i>(1/<i>k</i>). Here <i>f</i>(<i>x</i>*) is the maximum value of <i>f</i> in <i>S.</i> This algorithm and analysis were known before, and related to problems of statistics… CONTINUE READING
    344 Citations
    New approximation algorithms for minimum enclosing convex shapes
    • 20
    • Highly Influenced
    • PDF
    Sparse Approximate Conic Hulls
    • 5
    • PDF
    Robust vertex enumeration for convex hulls in high dimensions
    • 8
    • Highly Influenced
    • PDF
    Bayesian Model Averaging With Exponentiated Least Squares Loss
    • 2
    • PDF
    Approximation and Streaming Algorithms for Projective Clustering via Random Projections
    • 17
    • PDF
    Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization
    • 814
    • Highly Influenced
    • PDF
    Sparse convex optimization methods for machine learning
    • 72
    • PDF
    Greedy Frank-Wolfe Algorithm for Exemplar Selection