Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution

Abstract

The spliceosome is a dynamic assembly of five small nuclear ribonucleoproteins (snRNPs) that removes introns from eukaryotic pre-mRNA. U6, the most conserved of the spliceosomal small nuclear RNAs (snRNAs), participates directly in catalysis. Here, we report the crystal structure of the Saccharomyces cerevisiae U6 snRNP core containing most of the U6 snRNA and all four RRM domains of the Prp24 protein. It reveals a unique interlocked RNP architecture that sequesters the 5′ splice site–binding bases of U6 snRNA. RRMs 1, 2 and 4 of Prp24 form an electropositive groove that binds double-stranded RNA and may nucleate annealing of U4 and U6 snRNAs. Substitutions in Prp24 that suppress a mutation in U6 localize to direct RNA-protein contacts. Our results provide the most comprehensive view to date of a multi-RRM protein bound to RNA and reveal striking coevolution of protein and RNA structure.

DOI: 10.1038/nsmb.2832
020402014201520162017
Citations per Year

57 Citations

Semantic Scholar estimates that this publication has 57 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Montemayor2014CoreSO, title={Core structure of the U6 small nuclear ribonucleoprotein at 1.7-{\AA} resolution}, author={Eric J Montemayor and Elizabeth C. Curran and Hong Hong Liao and Kristie L. Andrews and Christine N. Treba and Samuel E Butcher and David A Brow}, journal={Nature Structural &Molecular Biology}, year={2014}, volume={21}, pages={544-551} }