Conversion of Mersenne Twister to double-precision floating-point numbers

@article{Harase2019ConversionOM,
  title={Conversion of Mersenne Twister to double-precision floating-point numbers},
  author={Shin Harase},
  journal={Math. Comput. Simul.},
  year={2019},
  volume={161},
  pages={76-83}
}
  • Shin Harase
  • Published 2019
  • Mathematics, Computer Science
  • Math. Comput. Simul.
  • Abstract The 32-bit Mersenne Twister generator MT19937 is a widely used random number generator. To generate numbers with more than 32 bits in bit length, and particularly when converting into 53-bit double-precision floating-point numbers in [ 0 , 1 ) in the IEEE 754 format, the typical implementation concatenates two successive 32-bit integers and divides them by a power of 2. In this case, the 32-bit MT19937 is optimized in terms of its equidistribution properties (the so-called dimension of… CONTINUE READING
    5 Citations
    On testing pseudorandom generators via statistical tests based on the arcsine law
    • PDF
    De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels
    • 1
    Comparing the PaGMO Framework to a De-randomized Meta-Differential Evolution on Calculation and Prediction of Glucose Levels

    References

    SHOWING 1-10 OF 45 REFERENCES
    On the F2-linear relations of Mersenne Twister pseudorandom number generators
    • Shin Harase
    • Mathematics, Computer Science
    • Math. Comput. Simul.
    • 2014
    • 15
    • PDF
    SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator
    • 255
    • Highly Influential
    • PDF
    Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
    • 5,071
    • Highly Influential
    • PDF
    Fast lattice reduction for F2-linear pseudorandom number generators
    • 7
    • PDF
    Implementing 64-bit Maximally Equidistributed F2-Linear Generators with Mersenne Prime Period
    • 2
    • PDF
    An efficient lattice reduction method for F2-linear pseudorandom number generators using Mulders and Storjohann algorithm
    • Shin Harase
    • Mathematics, Computer Science
    • J. Comput. Appl. Math.
    • 2011
    • 8
    • PDF
    On the xorshift random number generators
    • 83
    • PDF
    Sparse Serial Tests of Uniformity for Random Number Generators
    • 50
    • PDF