Convergence of the Non-Uniform Physarum Dynamics

  title={Convergence of the Non-Uniform Physarum Dynamics},
  author={A. Karrenbauer and P. Kolev and K. Mehlhorn},
  • A. Karrenbauer, P. Kolev, K. Mehlhorn
  • Published 2020
  • Physics, Computer Science
  • ArXiv
  • Let $c \in \mathbb{Z}^m_{> 0}$, $A \in \mathbb{Z}^{n\times m}$, and $b \in \mathbb{Z}^n$. We show under fairly general conditions that the non-uniform Physarum dynamics \[ \dot{x}_e = a_e(x,t) \left(|q_e| - x_e\right) \] converges to the optimum solution $x^*$ of the weighted basis pursuit problem minimize $c^T x$ subject to $A f = b$ and $|f| \le x$. Here, $f$ and $x$ are $m$-vectors of real variables, $q$ minimizes the energy $\sum_e (c_e/x_e) q_e^2$ subject to the constraints $A q = b$ and… CONTINUE READING
    3 Citations
    Convergence of the Non-Uniform Directed Physarum Model
    • 2
    • PDF
    Physarum Multi-Commodity Flow Dynamics
    On the Convergence of Network Systems
    • 1
    • PDF


    Convergence of the Non-Uniform Directed Physarum Model
    • 2
    • PDF
    Numerical Solution of Monge–Kantorovich Equations via a Dynamic Formulation
    • 10
    On a Natural Dynamics for Linear Programming
    • 23
    • PDF
    Physarum Dynamics and Optimal Transport for Basis Pursuit
    • 7
    • Highly Influential
    • PDF
    Towards a Stationary Monge-Kantorovich Dynamics: The Physarum Polycephalum Experience
    • 14
    • PDF
    Physarum can compute shortest paths
    • 108
    • PDF
    Two Results on Slime Mold Computations
    • 6
    • PDF
    A revised model of fluid transport optimization in Physarum polycephalum
    • V. Bonifaci
    • Computer Science, Medicine
    • Journal of mathematical biology
    • 2017
    • 3
    • PDF
    A mathematical model for adaptive transport network in path finding by true slime mold.
    • 304
    • PDF