Convergence of quantum random walks with decoherence

@inproceedings{Fan2011ConvergenceOQ,
  title={Convergence of quantum random walks with decoherence},
  author={Shimao Fan and Zhiyong Feng and Sheng Xiong and Wei-Shih Yang},
  year={2011}
}
  • Shimao Fan, Zhiyong Feng, +1 author Wei-Shih Yang
  • Published 2011
  • Mathematics, Physics
  • In this paper, we study the discrete-time quantum random walks on a line subject to decoherence. The convergence of the rescaled position probability distribution p(x,t) depends mainly on the spectrum of the superoperator L{sub kk}. We show that if 1 is an eigenvalue of the superoperator with multiplicity one and there is no other eigenvalue whose modulus equals 1, then P(({nu}/{radical}(t)),t) converges to a convex combination of normal distributions. In terms of position space, the rescaled… CONTINUE READING

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    1
    Twitter Mention

    Citations

    Publications citing this paper.
    SHOWING 1-5 OF 5 CITATIONS

    On Some Questions of C. Ampadu Associated with the Quantum Random Walk

    VIEW 5 EXCERPTS
    CITES BACKGROUND
    HIGHLY INFLUENCED

    Quantum walks: a comprehensive review

    VIEW 2 EXCERPTS
    CITES BACKGROUND

    Asymptotic distributions of quantum walks on the line with two entangled coins

    • Chaobin Liu
    • Mathematics, Computer Science, Physics
    • Quantum Information Processing
    • 2011

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 20 REFERENCES

    Phys

    • Y. Aharonov, L. Davidovich, N. Zagury
    • Rev. A 48, 1687,
    • 1993
    VIEW 10 EXCERPTS
    HIGHLY INFLUENTIAL

    Phys

    • C. Liu, N. Petulante
    • Rev. E 81, 031113
    • 2010

    Phys

    • C. Liu, N. Petulante
    • Rev. E 81, 031113
    • 2010

    Phys

    • W. Bruzda, V. Cappellini, H. J. Sommers, K. Zyczkowski
    • Lett. A 375, 320-324
    • 2006

    Phys

    • W. Bruzda, V. Cappellini, H. J. Sommers, K. Zyczkowski
    • Lett. A 375, 320-324
    • 2006

    Weak limits for quantum random walks.

    VIEW 1 EXCERPT

    Weak limits for quantum random walks.

    VIEW 1 EXCERPT

    Phys

    • T. A. Brun, H. A. Carteret, A. Ambainis
    • Rev. A 67, 032304
    • 2003