Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system

@article{Pinto2007ConvergenceOA,
  title={Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system},
  author={Martin Campos Pinto and Michel Mehrenberger},
  journal={Numerische Mathematik},
  year={2007},
  volume={108},
  pages={407-444}
}
An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two-dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which… CONTINUE READING
BETA

References

Publications referenced by this paper.
SHOWING 1-10 OF 43 REFERENCES

The integration of the Vlasov equation in configuration space

  • C. Z. Cheng, G. Knorr
  • J. Comput. Phys., 22:330–351
  • 1976
Highly Influential
7 Excerpts

A total curvature diminishing property for P1 finite element interpolation

  • M. Campos Pinto
  • Math. Forschungs. Oberwolfach Report, 34/
  • 2005
1 Excerpt

Adaptive numerical resolution of the Vlasov equation

  • M. Campos Pinto, M. Mehrenberger
  • Numerical methods for hyperbolic and kinetic…
  • 2005
1 Excerpt

Développement et analyse de schémas adaptatifs pour les équations de transport

  • M. Campos Pinto
  • U. P. et M. Curie, Paris
  • 2005
2 Excerpts

Vay. Vlasov simulation of beams with a moving grid

  • E. Sonnendrücker, F.Filbet, A. Friedman, E. Oudet, J.L
  • Comput. Phys. Comm,
  • 2004
1 Excerpt

A conservative fully adaptive multiresolution algorithm for parabolic PDEs

  • O. Roussel, K. Schneider, A. Tsigulin, H. Bockhorn
  • J. Comput. Phys., 188(2):493–523
  • 2003
1 Excerpt

Similar Papers

Loading similar papers…