Convergence of Scaled Delta Expansion: Anharmonic Oscillator

@article{Guida1995ConvergenceOS,
  title={Convergence of Scaled Delta Expansion: Anharmonic Oscillator},
  author={R. Guida and K. Konishi and Hiroshi Suzuki},
  journal={Annals of Physics},
  year={1995},
  volume={241},
  pages={152-184}
}
Abstract We prove that the linear delta expansion for energy eigenvalues of the quantum mechanical anharmonic oscillator converges to the exact answer if the order dependent trial frequency Ω is chosen to scale with the order as Ω = CNγ; 1/3 0 as N → ∞. It converges also for γ = 1/3, if C ≥ αcg1/3, αc ≃ 0.570875, where g is the coupling constant in front of the operator q4/4. The extreme case with γ = 1/3, C = γcg1/3 corresponds to the choice discussed earlier by Seznec and Zinn-Justin and… Expand
Improved Convergence Proof of the Delta Expansion and Order Dependent Mappings
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 33 REFERENCES
Large Order Behaviour of Perturbation Theory
"J."
Phys
  • 20 (1979), 1398; J. C. Le Guillou and J. Zinn-Justin, Ann. Phys. (N.Y.) 147
  • 1983
Phys
  • Rev. D47
  • 1993
Phys
  • Rev. D49
  • 1994
Phys
  • Rev. D47
  • 1993
Phys. Rev
  • Phys. Rev
  • 1994
Phys
  • Rev. D35 (1987), 1835; Phys. Rev. D36 (1987), 2415; Phys. Rev. D38 (1988), 2507; Ann. Phys. (N.Y.) 228
  • 1993
Phys. Rev
  • Phys. Rev
  • 1993
...
1
2
3
4
...