Convergence in law of the maximum of nonlattice branching random walk

@inproceedings{Bramson2014ConvergenceIL,
  title={Convergence in law of the maximum of nonlattice branching random walk},
  author={Maury Bramson and Jian Ding and Ofer Zeitouni},
  year={2014}
}
Let $\eta^*_n$ denote the maximum, at time $n$, of a nonlattice one-dimensional branching random walk $\eta_n$ possessing (enough) exponential moments. In a seminal paper, Aidekon demonstrated convergence of $\eta^*_n$ in law, after recentering, and gave a representation of the limit. We give here a shorter proof of this convergence by employing reasoning motivated by Bramson, Ding and Zeitouni. Instead of spine methods and a careful analysis of the renewal measure for killed random walks, our… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 11 REFERENCES

An Introduction to Probability Theory and its Applications, volume II

W. Feller
  • 1968
VIEW 5 EXCERPTS
HIGHLY INFLUENTIAL

Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique

A. Kolmogorov, I. Petrovsky, N. Piscounov
  • Moscou Universitet Bull. Math.,
  • 1937
VIEW 1 EXCERPT