#### 200 Citations

Cohomology of G-Green Functors

- 2018

In this paper, our goal is to develop the equivariant version of Hochschild cohomology. Here we develop a cohomology theory for Green functors. Mathematics Subject Classification: 16E30, 16E40

On passage to over-groups of finite indices of the Farrell-Jones conjecture

- Mathematics
- 2015

We use the controlled algebra approach to study the problem that whether the Farrell-Jones conjecture is closed under passage to over-groups of finite indices. Our study shows that this problem is… Expand

The main conjecture of Iwasawa theory for totally real fields

- Mathematics
- 2010

Let p be an odd prime. Let $\mathcal{G}$ be a compact p-adic Lie group with a quotient isomorphic to ℤp. We give an explicit description of K1 of the Iwasawa algebra of $\mathcal{G}$ in terms of… Expand

Kernels, inflations, evaluations, and imprimitivity of Mackey functors

- Mathematics
- 2008

Abstract Let M be a Mackey functor for a finite group G. By the kernel of M we mean the largest normal subgroup N of G such that M can be inflated from a Mackey functor for G / N . We first study… Expand

Induction Theorems and Isomorphism Conjectures for K- and L-Theory

- Mathematics
- 2004

Abstract The Farrell-Jones and the Baum-Connes Conjecture say that one can compute the algebraic K- and L-theory of the group ring and the topological K-theory of the reduced group C*-algebra of a… Expand

Burnside rings

- 2016

1 Let G be a finite group. The Burnside ring B(G) of the group G is one of the fundamental representation rings of G, namely the ring of permutation representations. It is in many ways the universal… Expand

Induction formulae for Mackey functors with applications to representations of the twisted quantum double of a finite group

- Mathematics
- 2014

Abstract In the theory of canonical induction formulae for Mackey functors, Boltje [4] demonstrated that the plus constructions, together with the mark morphism, are useful for the study of canonical… Expand

Canonical induction for trivial source rings

- Mathematics
- 2013

Ankara : The Department of Mathematics and the Graduate School of Engineering and Science of Bilkent University, 2013.

Induction Categories for Compact Lie Groups

- 2011

We use Euler groups to construct induction categories for Lie groups and suitable families of closed subgroups. Euler groups are universal additive invariants. Induction categories combine ordinary… Expand

Defect Theory for Prime Ideals and Dress"s Induction Theorem

- Mathematics
- 1999

It is due to Thévenaz that a large part of Puig"s theory of pointed groups carries over to the context of Green functors for finite groups, where here maximal ideals play the role of points in the… Expand

#### References

SHOWING 1-10 OF 26 REFERENCES

A note on Witt rings

- Mathematics
- 1973

This note contains some applications of the theory of Mackey functors (cf. [3], [4] and [5]) to the study of Witt rings. A detailed version may be found in [3, Appendices A and B]. So let R be a… Expand

Induction and structure theorems for Grothendieck and Witt rings of orthogonal representations of finite groups

- Mathematics
- 1973

The Grothendieckand Wittring of orthogonal representations of a finite group is defined and studied. The main application (only indicated) is the reduction of the computation of Wall's various… Expand

Vertices of integral representations

- Mathematics
- 1970

0. The following is an outline of a theory of 11-projective RG-modules, where R is a ring, G a finite group and !1 a family of subgroups of G. The first section contains the obvious generalisations… Expand

A characterisation of solvable groups

- Mathematics
- 1969

Let G be a finite group. A G-set M is a finite set on which G operates from the left by permutations, i.e. a finite set together with a map G • (g, m) ~ g m with g(h m)= (g h) m, e m = m for g, h, ee… Expand

Monomial representations under integral similarity

- Mathematics
- 1969

If u : (I,..., n) -+ [I)..., n) is a permutation, then we can represent (I as a permutation matrix ii = (6i,Vo~). Then cr 0 u’ = ab. If now T is a group and u is a permutational representation of T,… Expand