Constructive Sheaf Semantics

@article{Palmgren1997ConstructiveSS,
  title={Constructive Sheaf Semantics},
  author={E. Palmgren},
  journal={Math. Log. Q.},
  year={1997},
  volume={43},
  pages={321-327}
}
  • E. Palmgren
  • Published 1997
  • Mathematics, Computer Science
  • Math. Log. Q.
  • Sheaf semantics is developed within a constructive and predicative framework, Martin-Lof's type theory. We prove strong completeness of many sorted, first order intu- itionistic logic with respect to this semantics, by using sites of provably functional relations. 
    23 Citations

    Topics from this paper.

    Lambda Definability with Sums via Grothendieck Logical Relations
    • 32
    • PDF
    Parametric Sheaves for modelling StoreLocalityHongseok
    Forcing in proof theory
    • J. Avigad
    • Computer Science, Mathematics
    • Bull. Symb. Log.
    • 2004
    • 28
    • PDF
    Nonstandard Functional Interpretations and Categorical Models
    • 5
    • PDF
    Transfer principles in nonstandard intuitionistic arithmetic
    • 15
    • Highly Influenced
    • PDF
    Possible worlds and resources: the semantics of BI
    • 148
    • PDF
    Regular Categories and Regular Logic
    • 27
    • PDF
    Sheaf Semantics in Constructive Algebra and Type Theory

    References

    SHOWING 1-10 OF 11 REFERENCES
    A Model for Intuitionistic Non-Standard Arithmetic
    • I. Moerdijk
    • Computer Science, Mathematics
    • Ann. Pure Appl. Log.
    • 1995
    • 48
    Pretopologies and Completeness Proofs
    • G. Sambin
    • Mathematics, Computer Science
    • J. Symb. Log.
    • 1995
    • 45
    • PDF
    A Sheaf-Theoretic Foundation for Nonstandard Analysis
    • E. Palmgren
    • Mathematics, Computer Science
    • Ann. Pure Appl. Log.
    • 1997
    • 21
    Extensional concepts in intensional type theory
    • 177
    Intuitionistic type theory
    • 1,175
    • PDF
    Complete Heyting and Boolean algebras over a partial ordering : Constructive approaches
    • Toposes and Local Set Theories
    • 1988
    Complete Heyting and Boolean algebras over a partial ordering: Constructive approaches
    • Topology with Applications, Szeksziird (Hungary)
    • 1993
    Minimal Models of Heyting Arithmetic
    • 25
    • PDF
    Sheaves In Geometry And Logic
    • 853