Constraints on tensor and scalar couplings from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\rightarrow K\bar{\mu }\mu $$\end{document}B→Kμ¯μ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s\rightarrow \bar{\mu }\mu $$\end{document}Bs→μ¯μ

The angular distribution of B → K ̄ ( = e, μ, τ ) depends on two parameters, the lepton forward– backward asymmetry, A FB, and the flat term, F H . Both are strongly suppressed in the standard model and constitute sensitive probes of tensor and scalar contributions. We use the latest experimental results for = μ in combination with the branching ratio of… CONTINUE READING