Consequences of Arithmetic for Set Theory

@article{Halbeisen1994ConsequencesOA,
  title={Consequences of Arithmetic for Set Theory},
  author={Lorenz Halbeisen and Saharon Shelah},
  journal={J. Symb. Log.},
  year={1994},
  volume={59},
  pages={30-40}
}
In this paper, we consider certain cardinals in ZF (set theory without AC, the Axiom of Choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider seq1 1 (A), the set of all sequences of A without repetition. We compare seq1 1 (A) , the cardinality of this set, to P(A) , the cardinality of the power set of A. What is provable about these two cardinals in ZF? The main result of this paper is… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-5 of 5 references

A Handbook of Integer Sequences

  • N J A Sloane
  • A Handbook of Integer Sequences
  • 1973

The Axiom of Choice

  • Th, Jech
  • The Axiom of Choice
  • 1973

revision:1993-08-27 modified:2002-07-16 References

  • revision:1993-08-27 modified:2002-07-16…
  • 1967

Auswahlaxiom in der Algebra

  • H Läuchli
  • Comment. Math. Helv
  • 1962

Zur Axiomatik der Mengenlehre, Zeitschr. f. math. Logik und Grundl. der Math

  • E Specker
  • Zur Axiomatik der Mengenlehre, Zeitschr. f. math…
  • 1957

Similar Papers

Loading similar papers…