Connections which are harmonic with respect to general natural metrics
@article{Bejan2012ConnectionsWA, title={Connections which are harmonic with respect to general natural metrics}, author={C. L. Bejan and Simona-Luiza Druţǎ-Romaniuc}, journal={Differential Geometry and Its Applications}, year={2012}, volume={30}, pages={306-317} }
13 Citations
Harmonic Almost Complex Structures with Respect to General Natural Metrics
- Mathematics
- 2014
We continue here the study initiated in [9] on the harmonicity of certain geometric objects on the total space TM of the tangent bundle of a Riemannian space form (M(c), g). Precisely, in this paper…
Harmonic functions and quadratic harmonic morphisms on Walker spaces
- Mathematics
- 2016
Abstract: Let (W, q,D) be a 4-dimensional Walker manifold. After providing a characterization and some examples for several special (1, 1)-tensor fields on (W, q,D) , we prove that the proper almost…
The projective curvature of the tangent bundle with natural diagonal metric
- Mathematics
- 2015
Our study is mainly devoted to a natural diagonal metric $G$ on the total space $TM$ of the tangent bundle of a Riemannian manifold $(M,g)$. We provide the necessary and sufficient conditions under…
Structures Which are Harmonic with Respect to Walker Metrics
- Mathematics
- 2015
Let $${(W, q, \mathcal{D})}$$(W,q,D) be a Walker manifold. We find all Walker metrics which are harmonic [in the sense of Chen and Nagano in (J Math Soc Jpn 36:295–313, 1984)] w.r.t. q. On the total…
Some notes on vector fields in the tangent bundle
- Mathematics
- 2019
Let (M,g)be a Riemannian manifold and T (M) its tangent bundle with the horizontal lift H∇ of the affine connection ∇ of M. The aims of the present paper are to study conditions of infinitesimal…
Laplace, Einstein and Related Equations on D-General Warping
- MathematicsMediterranean Journal of Mathematics
- 2019
A new concept, namely, D-general warping $$(M=M_1\times M_2,g)$$(M=M1×M2,g), is introduced by extending some geometric notions defined by Blair and Tanno. Corresponding to a result of Tanno in almost…
Problems of Lifts in Symplectic Geometry
- MathematicsChinese Annals of Mathematics, Series B
- 2019
Let (M,ω) be a symplectic manifold. In this paper, the authors consider the notions of musical (bemolle and diesis) isomorphisms ωb: TM → T*M and ω#: T*M → TM between tangent and cotangent bundles.…
H-projectively Euclidean Kähler tangent bundles of natural diagonal type By CORNELIA-LIVIA BEJAN and SIMONA-LUIZA DRUŢĂ-ROMANIUC
- Mathematics
- 2016
We obtain the characterization of the natural diagonal Kähler manifolds (TM,G, J) which have constant holomorphic sectional curvature, or equivalently, which are H-projectively Euclidean. Moreover,…
Harmonic metrics on four dimensional non-reductive homogeneous manifolds
- Mathematics
- 2018
We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to…
Almost Paracontact Finsler Structures on Vector Bundle
- Mathematics
- 2013
In this paper, we define almost paracontact and normal almost paracontact Finsler structures on a vector bundle and find some conditions for integrability of these structures. We define paracontact…
References
SHOWING 1-10 OF 20 REFERENCES
On curvatures of linear frame bundles with naturally lifted metrics.
- Mathematics
- 2005
Abstract. We study some simple natural metrics on the linear frame bundle L M over a Riemannian manifold (M, g) which generalize the so-called diagonal metric introduced by K. P. Mok in 1978. We…
On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds
- Mathematics
- 2005
Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle
- Mathematics
- 1977
The concepts of M-tensor and M-connection on the tangent bundle TM of a smooth manifold M are used in a study of symmetric tensors of type (0, 2) and tensors of type (1, 1) on TM. The constructions…
New structures on the tangent bundles and tangent sphere bundles
- Mathematics
- 2008
In this paper we study a Riemannian metric on the tangent bundle T(M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger–Gromoll metric and a compatible almost complex structure…
Harmonicity of a foliation and of an associated map
- MathematicsBulletin of the Australian Mathematical Society
- 1996
A foliation on a Riemannian manifold (M, g) is harmonic if all the leaves are minimal submanifolds. We give a new characterisation of the harmonicity of a foliation on (M, g) by the harmonicity of an…
Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
- Mathematics
- 2001
Let $M$ be a differentiable manifold with a pseudo-Riemannian
metric $g$ and a linear symmetric connection $K$. We classify
all natural 0-order vector fields and 2-vector fields on $TM$
generated by…
ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS II
- Mathematics
- 1958
H.Poincare used the tangent sphere-bundles of ovaloids in three dimensional Euclidean space, i.e. the phase spaces of the ovaloids, to prove the existence of certain closed geodesies on the ovaloids.…
New structures on tangent bundles
- Mathematics
- 1998
We construct three kinds of almost complex structures compatible with some naturally defined Riemannian metrics on the tangent bundle of an almost Hermitian manifold and in particular, of a complex…
On cotangent bundles of some natural bundles
- Mathematics
- 1994
The author studies relations between the following two types of natural operators: 1. Natural operators transforming vector fields on manifolds into vector fields on a natural bundle $F$; 2. Natural…