Corpus ID: 232076213

Conforming finite element DIVDIV complexes and the application for the linearized Einstein-Bianchi system

@article{Hu2021ConformingFE,
  title={Conforming finite element DIVDIV complexes and the application for the linearized Einstein-Bianchi system},
  author={Jun Hu and Yizhou Liang and Rui Ma},
  journal={ArXiv},
  year={2021},
  volume={abs/2103.00088}
}
Abstract. This paper presents the first family of conforming finite element div div complexes on tetrahedral grids in three dimensions. In these complexes, finite element spaces of Hpdiv div,Ω; Sq are from a current preprint [Chen and Huang, arXiv: 2007.12399, 2020] while finite element spaces of both Hpsym curl,Ω;Tq and HpΩ;Rq are newly constructed here. It is proved that these finite element complexes are exact. As a result, they can be used to discretize the linearized EinsteinBianchi system… Expand
Conforming Finite Elements for $H(\text{sym}\,\text{Curl})$ and $H(\text{dev}\,\text{sym}\,\text{Curl})$
TLDR
This work constructs conforming finite elements for the spaces H(sym Curl) and H(dev sym Curl), and shows the construction, proves conformity and unisolvence, and point out optimal approximation error bounds. Expand

References

SHOWING 1-10 OF 16 REFERENCES
Finite elements for divdiv-conforming symmetric tensors
TLDR
Two types of finite element spaces on triangles are constructed for div-div conforming symmetric tensors and they are exploited to discretize the mixed formulation of the biharmonic equation. Expand
Finite elements for divdiv-conforming symmetric tensors in three dimensions
TLDR
Two types of finite element spaces on a tetrahedron are constructed for divdiv conforming symmetric tensors in three dimensions and several decomposition of polynomial vector and tensors spaces are revealed from the complexes. Expand
Nodal finite element de Rham complexes
TLDR
It is shown how regularity decreases in the finite element complexes, so that they branch into known complexes, and the standard de Rham complexes of Whitney forms can be regarded as the family with the lowest regularity. Expand
A new approach to finite element simulations of general relativity
TLDR
This dissertation presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of manually cataloging and calculating the discrete-time steps of theorems. Expand
Conforming Discrete Gradgrad-Complexes in Three Dimensions
TLDR
The first family of conforming discrete three dimensional Gradgrad-complexes consisting of finite element spaces is constructed, which can be used in the mixed form of the linearized Einstein-Bianchi system. Expand
A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids
TLDR
A new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions and the optimal order of convergence is achieved. Expand
Discrete Hessian complexes in three dimensions
One conforming and one non-conforming virtual element Hessian complexes on tetrahedral grids are constructed based on decompositions of polynomial tensor space. They are applied to discretize theExpand
An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation
TLDR
An ultraweak variational formulation for a variant of the Kirchhoff-Love plate bending model is developed and a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG) is introduced, proving well-posedness of the ultraweak formulation and quasi-optimal convergence of the DPG scheme. Expand
Fully discrete DPG methods for the Kirchhoff–Love plate bending model
We extend the analysis and discretization of the Kirchhoff-Love plate bending problem from [T. F\"uhrer, N. Heuer, A.H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model andExpand
Finite Element Exterior Calculus
...
1
2
...